O comportamento alimentar do bivalve invasor Limnoperna fortunei na presença de cianobactérias solitárias, coloniais e filamentosas foi testado em experimentos laboratoriais, para avaliar os efeitos do tamanho e da forma na alimentação dos mexilhões. A primeira hipótese sustenta que o mexilhão dourado filtra as partículas menores com maior eficiência, como as células solitárias de Microcystis, as quais seriam assimiladas mais facilmente. A segunda hipótese sustenta que L. fortunei filtra com mais eficiência as colônias arredondadas, como Microcystis, que seriam mais facilmente ingeridas do que os filamentos longos, como Planktothrix. As taxas de filtração do mexilhão dourado na presença das cianobactérias solitárias, coloniais e filamentosas foram semelhantes. No entanto, houve uma grande diferença nas taxas de ingestão e produção de pseudofezes. As células solitárias foram amplamente aceitas como alimento, enquanto as cianobactérias filamentosas e coloniais foram massivamente expulsas sob a forma de pseudofezes. Os resultados confirmaram a primeira hipótese, a de que o mexilhão dourado prefere ingerir partículas menores. A segunda hipótese foi rejeitada, pois os filamentosos de Planktothrix foram preferencialmente ingeridos em relação às colônias de Microcystis. O mexilhão dourado apresenta potencial para remover células tóxicas de cianobactérias (Microcystis); entretanto, esse potencial ficaria reduzido em eventos de floração, em que as formas coloniais, preferencialmente rejeitadas por L. fortunei, são predominantes. Nesse caso, a presença do bivalve no ambiente poderia ainda potencializar a ocorrência da floração via rejeição das cianobactérias coloniais e filamentosas nas pseudofezes.
Feeding behavior of the invasive bivalve Limnoperna fortunei in the presence of single-celled, colonial, and filamentous cyanobacteria was tested in laboratory experiments to evaluate the effects of size and shape on mussel feeding. The first hypothesis holds that golden mussel filters more efficiently smaller particles, such as single cells of Microcystis, which could be more easily assimilated by its filtering apparatus. The second hypothesis sustains that L. fortunei filters more efficiently rounded colonies, such as Microcystis, which would be more easily ingested than lengthy filamentous, such as Planktothrix. Filtration rates of golden mussel in the presence of single-celled, colonial and filamentous cyanobacteria were similar. Nevertheless, there was a great difference in the ingestion and pseudofeces production rates. Single cells were widely accepted as food, while filamentous and colonial cyanobacteria were massively expelled as pseudofeces. The results confirmed the first hypothesis that golden mussel prefers to ingest smaller particles. The second hypothesis was rejected since filamentous were preferentially ingested than colonial cyanobacteria. Golden mussel has the potential to remove toxic cells (Microcystis), however this potential would be reduced in cyanobacteria blooms, where colonial forms which are preferentially rejected by L. fortunei, are predominant. In this case, the presence of this invasive bivalve could also enhance the occurrence of blooms by rejecting colonial and filamentous cyanobacteria in pseudofeces.