Abstract Resistance to antibiotics is a growing problem that imposes limitations on current therapy around the world. The World Health Organization (WHO) recommends creating new antibacterial molecules to inhibit the most harmful bacteria by aiming at specific targets. Among such bacteria is multi-drug resistant Pseudomonas aeruginosa, a Gram-negative bacterium responsible for 70% of invasive infections worldwide. The aim of this investigation was to synthesize N-arylbenzylimines, examine their antibacterial activity against P. aeruginosa ATCC 27853, and determine their physicochemical properties by quantitative structure-activity relationship (QSAR/SAR) analysis. Seven N-arylbenzylimines were synthesized with yields ≥50%, all with the E-configuration (as shown by NMR spectra and confirmed with X-ray diffraction). The in vitro microbiological evaluations were carried out with the Kirby-Bauer method, following the guidelines of the Clinical & Laboratory Standards Institute (CLSI) . The N-arylbenzylimines produced a very good antibacterial effect on P. aeruginosa, with minimum inhibitory concentration (MIC) values ranging from 198.47-790.10 µM, calculated by the Hill method. Based on the slopes of the concentration-response curves, the mechanism of action is different between the test compounds and aztreonam, the reference drug. The QSAR study performed with in vitro experimental data found that biological activity correlates most significantly with molecular size, followed by lipophilicity and electronic effects. According to the SAR analysis of antibacterial activity, molecules cross bacterial barriers differently if they bear substituents with resonance versus inductive electronic effects. The physicochemical data presently described are of utmost importance for designing and developing new molecules to combat the pathogenicity and resistance of P. aeruginosa.
Resumen La resistencia a los antibióticos es un problema en aumento que impone limitaciones en la terapia actual a nivel mundial. La Organización Mundial de la Salud (OMS) recomienda crear nuevas moléculas antibacterianas para inhibir las bacterias más dañinas por medio de dianas específicas. Pseudomonas aeruginosa, entre estas bacterias, es Gram-negativa, resistente a múltiples fármacos, y responsable del 70% de las infeccione invasivas en el mundo. El objetivo de esta investigación fue sintetizar N-arilbenziliminas, examinar su actividad antibacteriana contra P. aeruginosa ATCC 27853, y determinar sus propiedades fisicoquímicas mediante análisis cuantitativo de relación estructura-actividad (QSAR/SAR). Todos los siete N-arilbenziliminas sintetizados tuvieron rendimientos ≥50% y la configuración E (de acuerdo con la espectroscopía de RMN y la difracción de rayos-X). Las pruebas microbiológicas in vitro se realizaron mediante el método Kirby-Bauer, siguiendo las directrices del Instituto de Estándares Clínicos y de Laboratorio (CLSI). Las N-arilbenziliminas mostraron efecto antibacteriano relevante sobre P. aeruginosa, con valores de la concentración mínima inhibitoria (MIC) en el rango de 198.47-790.10 µM, calculado por el método de Hill. Las pendientes de las curvas de concentración-respuesta sugieren que el mecanismo de acción es distinto entre las N-arilbenziliminas y aztreonam, el fármaco de referencia. El analisis QSAR de los datos experimentales indica que la actividad biológica se correlaciona de manera más significativa con el tamaño molecular, seguida de la lipofilicidad y los efectos electrónicos. Según el análisis SAR de la actividad antibacteriana, las moléculas cruzan las barreras bacterianas en forma diferente si portan sustituyentes con efectos electrónicos inductivos versus de resonancia. Estos datos fisicoquímicos son de suma importancia en el diseño y desarrollo de nuevas moléculas para combatir la infección y resistencia de P. aeruginosa.