OBJETIVO Analisar a associação entre concentrações dos poluentes atmosféricos e atendimentos diários por causas respiratórias em crianças. MÉTODOS Estudo ecológico de série temporal. Foram analisadas as contagens diárias de admissões hospitalares de crianças < 6 anos e as concentrações diárias de poluentes atmosféricos (PM10, SO2, NO2, O3 e CO), na Região da Grande Vitória, ES, de janeiro de 2005 a dezembro de 2010. Foram combinadas duas técnicas para a análise estatística: modelo de regressão de Poisson em modelos aditivos generalizados e análise de componentes principais. Essas técnicas complementaram-se e forneceram estimativas mais expressivas na estimação do risco relativo. Os modelos foram ajustados para efeitos da tendência temporal, sazonalidade, dias da semana, fatores meteorológicos e autocorrelação. No ajuste final do modelo, foi necessária a inclusão de modelos do tipo Autoregressive Moving Average Models (p,q) nos resíduos, para eliminar as estruturas de autocorrelação presente nas componentes. RESULTADOS O aumento de 10.49 μg/m3 (intervalo interquartílico) nos níveis do poluente PM10 resultou num aumento de 3,0% do valor do risco relativo estimado por meio do modelo aditivo generalizado – análise de componentes principais-sazonal autorregressivo –, enquanto no modelo aditivo generalizado usual a estimativa foi de 2,0%. CONCLUSÕES Em comparação ao modelo aditivo generalizado usual, em geral, a vertente proposta do modelo aditivo generalizado – análise de componentes principais apresentou melhores resultados na estimativa do risco relativo e na qualidade do ajuste.
OBJECTIVE To analyze the association between concentrations of air pollutants and admissions for respiratory causes in children. METHODS Ecological time series study. Daily figures for hospital admissions of children aged < 6, and daily concentrations of air pollutants (PM10, SO2, NO2, O3 and CO) were analyzed in the Região da Grande Vitória, ES, Southeastern Brazil, from January 2005 to December 2010. For statistical analysis, two techniques were combined: Poisson regression with generalized additive models and principal model component analysis. Those analysis techniques complemented each other and provided more significant estimates in the estimation of relative risk. The models were adjusted for temporal trend, seasonality, day of the week, meteorological factors and autocorrelation. In the final adjustment of the model, it was necessary to include models of the Autoregressive Moving Average Models (p, q) type in the residuals in order to eliminate the autocorrelation structures present in the components. RESULTS For every 10:49 μg/m3 increase (interquartile range) in levels of the pollutant PM10 there was a 3.0% increase in the relative risk estimated using the generalized additive model analysis of main components-seasonal autoregressive – while in the usual generalized additive model, the estimate was 2.0%. CONCLUSIONS Compared to the usual generalized additive model, in general, the proposed aspect of generalized additive model − principal component analysis, showed better results in estimating relative risk and quality of fit.