En este trabajo se realizó un estudio estadístico de variables físico químicas asociadas al fenómeno de contaminación ambiental, en particular concentración media mensual de SO2 , medidas en la ciudad Salta Capital, Argentina, simultáneamente a concentraciones de NO2 y O3 . Las series bajo estudio presentaban comportamientos dinámicos no lineales, datos atípicos y cambios estructurales, lo que hizo imposible modelarlas con tipologías econométricas tradiciones (AR, MA, ARMA, ARIMA, entre otras). Una solución eficiente que se encontró, hace uso de la teoría de los perceptrones multicapa. Mediante el modelo estructural de series de tiempo, esta solución se presenta como un proceso matemático iterativo que permite obtener un modelado final el cual tiene una muy alta confiabilidad (95%), para realizar pronoósticos a futuro sobre el comportamiento de la variable estudiada.
In this paper a statistical study of phisical-chemistry variables connected with enviroment pollution, specifically SO2 monthly average concentration, measured in Salta Capital city, Argentina, together with NO2 and O3 concentrations, was made. Time series under study shown non linear dinamic behaviour, outliers and structural changes. Due to these it was impossible to use typical econometric typologies (AR, MA, ARMA, ARIMA, among others). An effective solution which uses multistep perceptrons theory was found. By using structural time series modelling, this solution is presented by an iterative mathematical process that allows us to obtain a final model with a high confidence level (95%) in order to do the forecasting step on the studied variable.