RESUMO: O comprimento do hipocótilo tem-se destacado como potencial descritor da cultura da soja, no entanto, não se tem informação sobre o seu comportamento ao longo de várias épocas de plantio. Diante disto, objetivou-se identificar cultivares de soja com estabilidade e previsibilidade de comportamento quanto ao comprimento do hipocótilo por meio de redes neurais e metodologias tradicionais de adaptabilidade e estabilidade. Analisou-se 16 cultivares de soja em seis épocas de plantio, em condições de casa de vegetação. Em cada época, adotou-se o delineamento em blocos casualizados com quatro repetições, sendo a unidade experimental composta por três plantas e usou-se a média da parcela na análise. Os dados de comprimento de hipocótilo foram analisados por meio da análise de variância e teste de Tukey e, posteriormente, procedeu-se análises por meio do Método Tradicional, Plaisted e Peterson, Wricke, Eberhart e Russell e Redes Neurais Artificiais. Identificou-se efeito significativo (p<0,01 pelo teste F) para Cultivares x Épocas, Épocas e Cultivares. As cultivares BRS810C, BRSMG760SRR, TMG1175RR e BMX Tornado RR apresentaram menores médias, alta estabilidade e adaptabilidade geral quanto ao comprimento do hipocótilo de soja; enquanto que, a cultivar BG4272 apresentou maior média, alta estabilidade e adaptabilidade geral. A identificação de cultivares de soja de comportamento previsível e estável, quanto ao comprimento do hipocótilo, contribui para o Melhoramento da Soja no tocante ao melhor conhecimento do potencial descritor e à possibilidade de incremento do número de descritores.
ABSTRACT: The length of the hypocotyl has been highlighted as a potential descriptor of the soybean crop. However, there is no information available in the published literature about its behavior over several planting times. The present study aimed to identify soybean cultivars with stability and predictability of hypocotyl length behavior through neural networks and traditional adaptability and stability methodologies. We analyzed 16 soybean cultivars in 6 planting seasons under greenhouse conditions. In each season, a randomized block design with 4 replications was adopted. The experimental unit was composed of 3 plants. The plot mean was used in the analysis. Hypocotyl length data were analyzed by analysis of variance and Tukey’s test. Then analyses were carried out using the Traditional Method, Plaisted and Peterson, Wricke, Eberhart and Russell, and Artificial Neural Networks. A significant effect (p<0.01 by the F test) was identified for Cultivars versus Planting Season and Planting Seasons and Cultivars. Cultivars BRS810C, BRSMG760SRR, TMG1175RR, and BMX Tornado RR showed lower averages, high stability, and general adaptability regarding soybean hypocotyl length whereas the cultivar BG4272 presented higher mean, high stability, and general adaptability. Identification of soybean cultivars of predictable and stable behavior as to hypocotyl length contributes to Soybean Improvement as it further our knowledge on the potential descriptor and the possibility of increasing the number of descriptors.