Se ha convertido en una maleza importante en hábitats de agua dulce en ríos, lagos y embalses, tanto en zonas tropicales como templadas de todo el mundo. Algunas investigaciones han indicado que se puede utilizar para la fitorremediación de agua, debido a su fuerte asimilación de nitrógeno y fósforo, y la acumulación de metales pesados, su crecimiento y propagación puede desempeñar un papel importante en la ecología ambiental. Con el fin de explorar el mecanismo molecular de respuesta a la deficiencia de nitrógeno en E. crassipes, se construyeron bibliotecas de cDNA mediante síntesis adelantada y retrasada para raíces de E. crassipes en condiciones de deficiencia de nitrógeno mediante el método de hibridación supresiva sustractiva (SSH). Para este estudio se utilizaron 2 100 clones de síntesis adelantada y 2 650 de síntesis retrasada. De la biblioteca se escogieron al azar mil clones, 737 (527 unigenes) de síntesis adelanta- da y 757 (483 unigenes) de síntesis retrasada que fueron informativos. El análisis BLASTX mostró que había más transportadores y proteínas adenosilhomocisteinasa en E. crassipes cultivadas en un medio deficiente de nitrógeno; mientras que las cultivadas en un medio repleto de nitróge- no tenían más proteínas como UBR4 e3 ubiquitina-proteína ligasa y la proteína arabinogalactano 8 tipo fasciclina, así como otras proteínas del citoesqueleto, incluyendo la actina y la tubulina. Clúster del Grupo Ortológico (COG) también demostró que en la biblioteca de síntesis adelan- tada, la mayoría de los marcadores de secuencia expresada (ESTs) estaban involucrados en el transporte de coenzimas y el metabolismo.
Eichhornia crassipes is an aquatic plant native to the Amazon River Basin. It has become a serious weed in freshwater habitats in rivers, lakes and reservoirs both in tropical and warm temperate areas worldwide. Some research has stated that it can be used for water phytoremediation, due to its strong assimilation of nitro- gen and phosphorus, and the accumulation of heavy metals, and its growth and spread may play an important role in environmental ecology. In order to explore the molecular mechanism of E. crassipes to responses to nitrogen deficiency, we constructed forward and reversed subtracted cDNA libraries for E. crassipes roots under nitrogen deficient condition using a suppressive subtractive hybridization (SSH) method. The forward subtraction included 2 100 clones, and the reversed included 2 650 clones. One thousand clones were randomly selected from each library for sequencing. About 737 (527 unigenes) clones from the forward library and 757 (483 unigenes) clones from the reversed library were informative. Sequence BlastX analysis showed that there were more transporters and adenosylhomocysteinase-like proteins in E. crassipes cultured in nitrogen deficient medium; while, those cultured in nitrogen replete medium had more proteins such as UBR4-like e3 ubiquitin- protein ligase and fasciclin-like arabinogalactan protein 8-like, as well as more cytoskeletal proteins, including actin and tubulin. Cluster of Orthologous Group (COG) analysis also demonstrated that in the forward library, the most ESTs were involved in coenzyme transportation and metabolism. In the reversed library, cytoskeletal ESTs were the most abundant. Gene Ontology (GO) analysis categories demonstrated that unigenes involved in binding, cellular process and electron carrier were the most differentially expressed unigenes between the forward and reversed libraries. All these results suggest that E. crassipes can respond to different nitrogen status by efficiently regulating and controlling some transporter gene expressions, certain metabolism processes, specific signal transduction pathways and cytoskeletal construction.