OBJETIVO: Analisar causas básicas de óbito segundo a teoria de renda relativa. MÉTODOS: Os 96 distritos do Município de São Paulo, SP, foram divididos em dois grupos segundo desigualdade de renda, com base no índice de Gini (alta > 0,25 e baixa <0,25). Foi aplicada a metodologia propensity score matching para controlar por fatores de confusão referentes às diferenças socioeconômicas e demográficas entre os distritos. RESULTADOS: A diferença entre a mortalidade de distritos desiguais e mais igualitários foi estatisticamente significativa para homicídios (8,57 por 10.000 residentes [IC95% 2,60; 14,53]), doença isquêmica do coração (5,47 por 10.000 [IC95% 0,76; 10,17]), aids (3,58 por 10.000 [IC95% 0,58; 6,57]) e doenças respiratórias (3,56 por 10.000 [IC95% 0,18; 6,94]). As dez causas básicas mais frequentes foram responsáveis por 72,3% do total da diferença. A mortalidade infantil também foi estatisticamente maior para distritos mais desiguais (2,80 por 10.000 [IC95% 0,86; 4,74]), assim como mortalidade masculina (27,37 por 10.000 [IC95% 6,19; 48,55]) e feminina (15,07 por 10.000 [IC95% 3,65; 26,48]). CONCLUSÕES: Os resultados encontrados estão de acordo com o esperado pela teoria da renda relativa. A mortalidade por todas as causas básicas analisadas foi maior em distritos mais desiguais depois do uso da metodologia do propensity score matching. Estudos sobre a desigualdade de renda realizados em regiões menores precisam levar em consideração a distribuição heterogênea das características sociais e demográficas.
OBJECTIVE: To analyze cause-specific mortality rates according to the relative income hypothesis. METHODS: All 96 administrative areas of the city of São Paulo, southeastern Brazil, were divided into two groups based on the Gini coefficient of income inequality: high (>0.25) and low (<0.25). The propensity score matching method was applied to control for confounders associated with socioeconomic differences among areas. RESULTS: The difference between high and low income inequality areas was statistically significant for homicide (8.57 per 10,000; 95%CI: 2.60;14.53); ischemic heart disease (5.47 per 10,000 [95%CI 0.76;10.17]); HIV/AIDS (3.58 per 10,000 [95%CI 0.58;6.57]); and respiratory diseases (3.56 per 10,000 [95%CI 0.18;6.94]). The ten most common causes of death accounted for 72.30% of the mortality difference. Infant mortality also had significantly higher age-adjusted rates in high inequality areas (2.80 per 10,000 [95%CI 0.86;4.74]), as well as among males (27.37 per 10,000 [95%CI 6.19;48.55]) and females (15.07 per 10,000 [95%CI 3.65;26.48]). CONCLUSIONS: The study results support the relative income hypothesis. After propensity score matching cause-specific mortality rates was higher in more unequal areas. Studies on income inequality in smaller areas should take proper accounting of heterogeneity of social and demographic characteristics.
OBJETIVO: Analizar causas básicas de óbito según la teoría de renta relativa. MÉTODOS: Los 96 distritos del Municipio de Sao Paulo, SP, Brasil fueron divididos en dos grupos según desigualdad de renta, con base en el índice de Gini (alta ? 0,25 y baja < 0,25). Se aplicó la metodología propensity score matching para controlar por factores de confusión relacionadas con las diferencias socioeconómicas y demográficas entre los distritos. RESULTADOS: La diferencia entre la mortalidad de distritos desiguales y más igualitarios fue estadísticamente significativa para homicidios (8,57 por 10.000 residentes [IC95% 2,60; 14,53]), enfermedad isquémica del corazón(5,47 por 10.000 [IC95% 0,76; 10,17]), sida (3,58 por 10.000 [IC95% 0,58; 6,57]) y enfermedades respiratorias (3,56 por 10.000 [IC95% 0,18; 6,94]). Las diez causas básicas mas frecuentes fueron responsables por 72,3% del total de la diferencia. La mortalidad infantil también fue estadísticamente mayor para distritos más desiguales (2,80 por 10.000 [IC95% 0,86; 4,74]), así como la mortalidad masculina (27,37 por 10.000 [IC95% 6,19; 48,55]) y femenina (15,07 por 10.000 [IC95% 3,65 ; 26,48]). CONCLUSIONES: Los resultados encontrados están de acuerdo con lo esperado por la teoría de la renta relativa. La mortalidad por todas las causas básicas analizadas fue mayor en distritos más desiguales después del uso de la metodología del propensity score matching. Estudios sobre la desigualdad de renta realizados en regiones menores deben tomar en consideración la distribución heterogénea de las características sociales y demográficas.