Resumen (Objetivo) Este estudio busca caracterizar el conocimiento matemático especializado que movilizan estudiantes para maestro, al resolver tareas que involucran la comparación de áreas de figuras planas. (Metodología) Participan 70 estudiantes para maestro que cursan el tercer año del grado de Educación Primaria, en la Universidad Autónoma de Barcelona, durante el periodo 2020-21. Los estudiantes para maestro responden un cuestionario semiestructurado de respuesta abierta que contemplaba un total de ocho tareas. Se realiza un análisis de contenido cualitativo que considera los procedimientos y las justificaciones utilizadas por los estudiantes para maestro en la resolución de dos tareas. El foco está en dos de los subdominios del modelo de Conocimiento Especializado del Profesor de Matemáticas, el Conocimiento de los Temas y de la Estructura de las Matemáticas. (Resultados) El uso de procedimientos relacionados con la descomposición, y reorganización de superficies, facilita la movilización de categorías de conocimiento especializado y el establecimiento de conexiones con otros contenidos matemáticos. La coordinación de diversos registros de representación posibilita el establecimiento de conexiones intraconceptuales en la resolución de las dos tareas presentadas. (Conclusiones) Las representaciones, en sus registros discursivo y no discursivo, se presentan como indicadores claves, pues permiten hacer explícitos los procedimientos que son utilizados por los estudiantes para maestro y, a partir de estos, las justificaciones, propiedades y principios geométricos que sustentan el proceso de resolución.
Resumo (Objetivo) Este estudo visa caracterizar o conhecimento matemático especializado mobilizados por professores estagiários na resolução de tarefas que envolvem a comparação de áreas de figuras planas. (Metodologia) Participaram 70 professores estagiários do terceiro ano do ensino fundamental na Universidade Autônoma de Barcelona, durante o período de 2020-21. Os professores estagiários respondem a um questionário aberto semi-estruturado com um total de oito tarefas. É realizada uma análise de conteúdo qualitativo que considera os procedimentos e justificativas utilizadas pelos professores estagiários na resolução de duas tarefas. O foco está em dois dos subdomínios do modelo de Conhecimento Especializado do Professor de Matemática, Conhecimento dos Temas e da Estrutura da Matemática. (Resultado) O uso de procedimentos relacionados à decomposição e reorganização de superfícies facilita a mobilização de categorias de conhecimento especializado e o estabelecimento de conexões com outros conteúdos matemáticos. A coordenação de vários registros de representação permite estabelecer conexões intraconceituais na resolução das duas tarefas apresentadas. (Conclusões) As representações, em seus registros discursivos e não discursivos, são apresentadas como indicadores-chave, pois explicitam os procedimentos utilizados pelos professores estagiários e, a partir deles, as justificativas, propriedades e princípios geométricos que sustentam o processo de resolução.
Abstract (Objective) This study seeks to characterize the specialized mathematical knowledge that preservice teachers make use of when solving tasks that involve comparison of areas of flat figures. (Methodology) Seventy (70) preservice teachers, in the third year of the Primary Education degree at the Universidad Autónoma de Barcelona during the period 2020-21, participated in the study. Preservice teachers answered a semi-structured open-ended questionnaire, which included eight tasks. A qualitative content analysis was carried out to analyze the procedures and justifications used by preservice teachers when solving two tasks. The analysis focuses on two of the subdomains of the Mathematics Teacher's Specialized Knowledge model, Knowledge of Topics and of the Structure of Mathematics. (Results) The use of procedures related to the decomposition and reorganization of surfaces facilitates making use of categories of specialized knowledge, and establishing connections with other types of mathematical content. Furthermore, coordination of different registers of representation makes it possible to establish intra conceptual connections in the solution of the two tasks presented. (Conclusions) Representations, in their discursive and non-discursive registers, are presented as key indicators which assist in making explicit the procedures used by preservice teachers, and based on them, the justifications, properties and geometric principles that support the resolution process.