The Andean Mountain chain is unique in its origin, its geological history, and its impact on human habitants. It was created and is maintained through the subduction of an oceanic plate underneath the Western border of the South American continent. In the first place, subduction causes the magmatic activity which is so typical of almost the entire mountain chain. Indirectly, subduction is also responsible for shortening, thickening, and uplift of the continental crust above the subduction zone. Earthquakes are another consequence of the convergence between oceanic and continental crust. Convergence has been going on for at least 200 million years. However, the High Andean Cordillera and the Altiplano as we know them today are relatively young. The Andes started to form only around 20 million years before present. Especially in the Central Andes, the uplift seems to be a self-accelerating process. Under the influence of an extremely dry climate, nothing but the shear strength of the crust would stop the further rise of the cordillera. What are the reasons for crustal thickening and uplift? Where is the connection between magmatism, volcanoes and the formation of ore deposits, which are so important for the Andean countries? This paper attempts to give some answers to these questions and tries to explain the evolution of the Andean Cordillera between the city of Arica and the Lago Chungará. During the last 20 million years, thickening of the continental crust above the subduction zone was accomplished both, by intensive magmatism and, more important, by telescopic stacking of the crust. This became possible because the crust underwent heating, and hence softening, due to the intense magmatic activity which in turn was a consequence of orthogonal, high-angle subduction since that time. Once softened in its deeper parts, the continental crust could no longer withstand the compressive forces exerted "from behind", that is, from the rigid Brasilian Shield which moves westward against the backstop of the subduction zone. However, heating had an additional consequence: in places of high heat flow, the crust became partially melted and erupted gigantic masses of magma onto the surface. One of the first flare-ups of these gigantic eruptions happened some 19 million years ago; it delivered a monstruous volume of about 3.000 km³ of magma and covered huge areas with a thick sheet of ignimbrites. An ignimbrite is the product of an explosive volcanic eruption; it is the fall-out from highly mobile flows where volcanic particles are suspended in a mixture of volcanic gas and heated air. Ever since this first flare-up, ignimbrites now and again covered parts of the Altiplano and the Western Escarpment of the Central Andes, imprinting their character to the landscape and testifying that the process of heating, thickening, and melting is still at work along the roots of the mountains. One last consequence of the increased magmatism beneath the Central Andes is the fact that in the crust above a magma chamber hot water may concentrate ore-forming elements such as copper, gold, and silver. These deposits are mined in a lot of places in the Andes and represent a considerable part of the Chilean economy. Large earthquakes, giant landslides, and huge volcanic eruptions have frequently affected the Western slope of the Central Andes. It is highly probable that similar events will occur again in future. What we do not know is: when. What science can do, is to try to foresee these things with reasonable certainty. What science can definitely not do is trying to prevent humanity from these monstruous acts of violence by nature.
La cadena montañosa andina es única en su origen, su historia geológica y su impacto en los habitats humanos. Fue creada y se mantiene a través de la subducción de una placa tectónica oceánica ubicada debajo del límite oeste del continente sudamericano. En primer lugar, la subducción causa la actividad magmática que es muy típica de casi toda la cadena montañosa. Indirectamente, la subducción también es responsable por el engrasamiento y levantamiento de la corteza continental encima de la zona de subducción. Los terremotos son otra consecuencia de la convergencia entre la corteza oceánica y continental. Esta convergencia ha estado ocurriendo por lo menos en los últimos 200 millones de años. Sin embargo, la alta Cordillera de los Andes y el Altiplano como los conocemos hoy son relativamente jóvenes. Los Andes comenzaron a formarse sólo alrededor de 20 millones de años antes del presente. Específicamente, en los Andes Centrales, el levantamiento parece ser un proceso autoacelerado. Bajo la influencia de un clima extremadamente seco, nada más que la resistencia de la propia corteza detendrá el levantamiento posterior de la cordillera. ¿ Cuáles son las razones del engrasamiento de la corteza y de su levantamiento? ¿Dónde está la conexión entre magmatismo, volcanes y la formación de los depósitos de minerales, los cuales son muy importantes para los países andinos ? Este artículo intenta entregar algunas respuestas a estas preguntas y trata de explicar la evolución de la Cordillera de los Andes entre la ciudad de Arica y el Lago Chungara. Durante los últimos 20 millones de años, el engrasamiento de la corteza continental por encima de la zona de subducción es consecuencia de un magmatismo intenso, pero más importante aún, por el apilamiento telescópico de la corteza. Esto es un efecto del recalentamiento y ablandamiento de la corteza continental inferior debido a la intensa actividad magmática, consecuencia a su vez del alto ángulo de la subducción, desde aquel tiempo. Una vez ablandado en su parte más profunda, la corteza terrestre no puede soportar las fuerzas de compresión ejercidas "desde atrás ", es decir desde el rígido Escudo Brasileño, que se mueve hacia el oeste contra la parte posterior de la zona de subducción. Sin embargo, el recalentamiento tiene una consecuencia adicional: en lugares con flujos de alto calor, la corteza se funde parcialmente y erupciona en masas gigantes de magma sobre la superficie. Una de las primeras erupciones gigantes ocurrieron hace unos 19 millones de años atrás y entregó un monstruoso volumen de alrededor de 3.000 km' de magma que cubrió una gran área con una gruesa capa de ignimbrita. La ignimbrita es el producto de una erupción volcánica explosiva; es el escurrimiento de flujos altamente móviles donde las partículas volcánicas están suspendidas en una mezcla de gas volcánico y aire caliente. Desde entonces, la ignimbrita cubre partes del altiplano y de la ladera oeste de los Andes Centrales, imprimiéndole su carácter al paisaje y testimoniando que este proceso de recalentamiento, engrasamiento y fundición continúa aún en funcionamiento a lo largo de la base de las montañas. La última consecuencia del aumento del magmatismo debajo de los Andes Centrales es el hecho que en la corteza encima de las cámaras de magma el agua se recalienta y se enriquece de elementos como cobre, oro y plata. Una vez precipitados, se pueden formar yacimientos metálicos muy importantes que se explotan en muchos lugares en los Andes y representan una parte considerable de la economía chilena. Grandes terremotos, deslizamientos gigantes, y grandes erupciones volcánicas han afectado la ladera oeste de los Andes Centrales. Es altamente probable que eventos similares ocurran en el futuro. Lo que no sabemos es cuando van a ocurrir. Lo que la ciencia puede hacer es tratar de predecir estos fenómenos con razonable seguridad. Lo que la ciencia no puede es tratar de prevenir a la humanidad ante estos monstruosos fenómenos de violencia de la naturaleza.