RESUMO Objetivos: o presente estudo teve como objetivo avaliar, por meio da Análise de Elementos Finitos, as tensões geradas por forças ortodônticas intrusivas em um molar superior e no osso alveolar circundante. Métodos: um segmento maxilar foi modelado no software SolidWorks 2010 (SolidWorks Corporation, Waltham, MA, EUA), contendo: osso cortical e medular, primeiro molar extruído, tecido periodontal e acessórios ortodônticos. Um modelo de elementos finitos simulou forças intrusivas de 4 N no elemento dentário, aplicadas a partir de mini-implantes em localizações distintas. Três diferentes vetores para mecânica de intrusão foram simulados: ancoragem em mini-implante vestibular, ancoragem em mini-implante palatino ou a associação de ambas. Todas as análises foram realizadas em termos de tensão mínima principal e deformação total. A análise qualitativa foi feita por meio do mapeamento da distribuição das tensões em gradiente de cores. A análise quantitativa foi feita em software específico para leitura e resolução de equações numéricas (ANSYS Workbench 14, Ansys, Canonsburg, Pennsylvania, EUA). Resultados: as forças intrusivas aplicadas simultaneamente nos dois lados (vestibular e palatino) resultaram em uma distribuição mais homogênea das tensões geradas, sem zonas de acúmulo de tensão e com uma resultante vertical para a movimentação intrusiva. As forças aplicadas somente em um lado, vestibular ou palatino, resultaram em zonas de concentração de tensão, com maiores valores, e na inclinação do elemento dentário para o lado em que a força foi aplicada. Conclusão: as forças unilaterais promoveram maior tensão no ápice radicular e maiores inclinações do elemento dentário. Já as forças bilaterais promoveram melhor distribuição das tensões e não resultaram em inclinação do elemento dentário. Assim, as forças intrusivas ancoradas bilateralmente apresentam menor probabilidade de reabsorção do ápice radicular.
ABSTRACT Objective: The aim of his study was to evaluate the stress on tooth and alveolar bone caused by orthodontic intrusion forces in a supraerupted upper molar, by using a three-dimensional Finite Element Method (FEM). Methods: A superior maxillary segment was modeled in the software SolidWorks 2010 (SolidWorks Corporation, Waltham, MA, USA) containing: cortical and cancellous bone, supraerupted first molar, periodontal tissue and orthodontic components. A finite element model has simulated intrusion forces of 4N onto a tooth, directed to different mini-screw locations. Three different intrusion mechanics vectors were simulated: anchoring on a buccal mini-implant; anchoring on a palatal mini-implant and the association of both anchorage systems. All analyses were performed considering the minimum principal stress and total deformation. Qualitative analyses exhibited stress distribution by color maps. Quantitative analysis was performed with a specific software for reading and solving numerical equations (ANSYS Workbench 14, Ansys, Canonsburg, Pennsylvania, USA). Results: Intrusion forces applied from both sides (buccal and palatal) resulted in a more homogeneous stress distribution; no high peak of stress was detected and it has allowed a vertical resultant movement. Buccal or palatal single-sided forces resulted in concentrated stress zones with higher values and tooth tipping to respective force side. Conclusion: Unilateral forces promoted higher stress in root apex and higher dental tipping. The bilateral forces promoted better distribution without evidence of dental tipping. Bilateral intrusion technique suggested lower probability of root apex resorption.