Resumo O objetivo do presente estudo in vitro foi avaliar a variação de temperatura dentro da câmara pulpar durante a fotoativação de um sistema adesivo e de camadas de resina composta com diferentes fontes de luz. Cavidades com dimensões de 8x10 mm foram preparadas na superfície vestibular de incisivos bovinos deixando uma espessura de dentina remanescente de 1 mm. Os espécimes foram inseridos em uma cuba térmica com água à temperatura de 37±1 °C. A temperatura no interior da câmara foi medida a cada 10 s durante 40 s de ativação de luz do sistema adesivo (SBMP; 3M/ESPE) e três camadas de 1 mm de espessura consecutivas de resina composta (Z250; 3M/ESPE ). Três fonte de luz foram avaliadas: Elipar 2500 (QTH), LD Max (LED de baixa densidade de potência), VALO (LED alta densidade de potência). Os resultados foram submetidos a ANOVA de medidas repetidas a um critério e teste de Tukey (ambos com p<0,01). O aquecimento da reação exotérmica foi observado nos incrementos de resina composta, mas não no sistema adesivo. O LED de alta densidade de potência mostrou uma média de temperatura mais elevada (42,7±1,56 °C) seguido pela luz halogéna (40,6±0,67 °C) e o LED de menor densidade de potência (37,8±0,12 °C). Maiores aumentos de temperatura foram observados na fotoativação do sistema adesivo e do primeiro incremento de resina composta, independente da fonte de luz utilizada. A partir do segundo incremento de resina composta, o material restaurador agiu como estrutura dispersiva de calor, reduzindo o aumento de temperatura. Independente da fonte de luz e da etapa restauradora, a temperatura aumentou com o tempo de irradiação. Pode-se concluir que a fonte de luz, o tempo de irradiação, a espessura resina composta interferiram na variação de temperatura no interior da câmara pulpar.
Abstract The aim of the present in vitro study was to evaluate the temperature variation inside the pulp chamber during light-activation of the adhesive and resin composite layers with different light sources. Cavities measuring 8x10 mm were prepared on the buccal surface of bovine incisors, leaving a remaining dentin thickness of 1 mm. Specimens were placed in a 37±1 °C water bath to standardize the temperature. The temperature in the pulp chamber was measured every 10 s during 40 s of light activation of the adhesive system (SBMP-3M/ESPE) and in the three consecutive 1-mm-thick layers of resin composite (Z250-3M/ESPE). Three light source devices were evaluated: Elipar 2500 (QTH), LD Max (LED low irradiance) and VALO (LED high irradiance). The results were submitted to one-way ANOVA with repeated measures and Tukey's test, both with p<0.001. The exothermic reaction warming was observed in the Z250 increments, but not in the SBMP. The high irradiance LED showed a higher temperature average (42.7±1.56 °C), followed by the quartz-tungsten-halogen light (40.6±0.67 °C) and the lower irradiance LED (37.8±0.12 °C). Higher temperature increases were observed with the adhesive and the first resin composite increment light-activation, regardless of the employed light source. From the second increment of Z250, the restorative material acted as a dispersive structure of heat, reducing temperature increases. Regardless the light source and restorative step, the temperature increased with the irradiation time. It may be concluded that the light source, irradiation time and resin composite thickness interfered in the temperature variation inside the pulp chamber.