O objeto do presente estudo foi o desenvolvimento de metodologias alternativas para determinação direta de chumbo em amostras não digeridas de urina humana e soro, por espectrometria de absorção atômica com atomização eletrotérmica. Neste sentido algumas substâncias foram investigadas para atuarem como modificador químico. Volumes de 20 µL de amostras de urina diluídas 1 + 1, v/v e de soro 1 + 4, v/v, com HNO3 1% v/v e 0,02% v/v de cloreto de trimetilcetil amônio (CTAC) foram preparados diretamente nos copos do amostrador automático e introduzidos no forno de grafite. Para modificadores em solução foram usados 10 µL. Curvas de temperaturas de pirólise e atomização foram usadas em todas otimizações nas matrizes diluídas. Para urina, com o uso de irídio permanente (500 µg), as melhores temperaturas de pirólise e atomização foram de 900 e 1600 ºC respectivamente, com uma massa característica de 12 pg (recomendada de 10 pg), com pulsos de absorção simétricos e fundo corrigido. Amostras de urina contaminadas apresentaram recuperações entre 86 e 112%, usando Ir permanente. Analisando amostras de urina certificada, os resultados encontrados foram concordantes com os valores certificados (considerando um intervalo de confiança de 95%) para dois níveis do metal. Para soro, bons resultados foram obtidos com a mistura de Zr + Rh ou Ir + Rh como modificadores permanentes, com massas características de 9,8 e 8,1 pg respectivamente. Recuperações de amostras de soro contaminadas variaram entre 98,6 e 100,1% (Ir + Rh) e entre 93,9 e 105,2% (Zr + Rh). Em ambos os estudos de recuperação, o desvio padrão relativo (n=3) foi menor que 7%. A calibração para ambas as amostras foi feita através de curvas de calibração aquosas que apresentaram r² maior que 0,99. Os limites de detecção foram de 0,7 µg L-1 para as amostras de soro, usando Zr + Rh permanente, e de 1,0 µg L-1 para urina com irídio permanente.
The object of the present study was the development of alternative methods for the direct determination of lead in undigested samples of human urine and serum by electrothermal atomic absorption spectrometry (ET AAS). Thus, some substances have been investigated to act as chemical modifiers. Volumes of 20 µL of diluted samples, 1 + 1, v/v for urine and 1 + 4, v/v for serum, with HNO3 1% v/v and 0.02% v/v of cetil trimethyl ammonium chloride (CTAC) were prepared directly in the autosampler cups and placed into the graphite furnace. For modifiers in solutions 10 µL were used. Pyrolysis and atomization temperature curves were used in all optimizations in the matrixes diluted as exposed. For urine with permanent iridium (500 µg), the best pyrolysis and atomization temperatures were 900 and 1600 ºC, respectively, with a characteristic mass of 12 pg (recommended of 10 pg), with symmetrical absorption pulses and corrected background. Spiked urine samples presented recoveries between 86 and 112% for Ir permanent. The analysis results of certified urine samples are in agreement with certified values (95% of confidence) for two levels of the metal. For serum, good results were obtained with the mixture of Zr+Rh or Ir+Rh as permanent modifiers, with characteristic masses of 9.8 and 8.1 pg, respectively. Recoveries from spiked serum samples varied between 98.6 and 100.1% (Ir+Rh) and between 93.9 and 105.2% (Zr+Rh). In both recovery studies, the relative standard deviation (n=3) was lower than 7%. Calibration for both samples were made with aqueous calibration curves and presented r² higher than 0.99. The limits of detection were 0.7 µg L-1 for serum samples, with Zr+Rh permanent, and 1.0 µg L-1 for urine with iridium permanent.