Resumo O carvão vegetal proveniente de florestas plantadas é uma fonte de energia renovável utilizada na siderurgia do Brasil, todavia, em sua produção há liberação do gás de pirólise, que pode ser considerado um gás com baixo poder calorífico inferior. A sustentabilidade da produção de carvão vegetal tem demandado a queima destes gases, podendo ser, inclusive, uma condicionante ambiental. Neste artigo foi avaliado o desempenho de diferentes dispositivos de mistura para câmara de queima, sistema que permite mitigar os impactos ambientais decorrentes da carbonização, assim como o possível aproveitamento da energia térmica na secagem da madeira e geração de energia elétrica. Um sistema de queima de gases existente foi utilizado como referência, sendo determinados a composição, vazão dos gases e temperaturas de trabalho para calibração de modelo em dinâmica dos fluidos computacional. O modelo utilizado consiste nas equações diferenciais de conservação de massa, quantidade de movimento, energia e de espécies químicas, sendo empregado nos estudos de otimização de diferentes dispositivos de mistura. Dentre os dispositivos estudados (AC), o AC5 apresentou-se mais eficiente quanto ao aproveitamento do volume físico da câmara, tendo menor porcentagem de zona morta, representando ganho de 5% no tempo de residência, quando comparado ao AC1, dispositivo usado sistema de referência. Verificou-se por meio das distribuições espaciais da fração de volume de CO e O2, e das linhas de corrente, que os dispositivos de mistura internos são fundamentais para uma melhor mistura entre o combustível e o comburente e, consequentemente, produzir queima de gases com melhor qualidade.
Abstract Charcoal from planted forest represents a renewable energy source used by steelmaking in Brazil. However, the pyrolysis gas released from carbonization is characterized by a low lower heating value. The sustainability of charcoal production has demanded the combustion of pyrolysis gas, which can represent an environmental constraint. In this paper, different mixing devices were evaluated for a combustion chamber, a system that allows mitigating the environmental impacts of carbonization, use of thermal energy in the wood drying and electric power generation. An existent combustion system was analyzed and used as a reference to calibrate a computational fluid dynamics model. The input data for the model were gas composition, gas flow rate and its temperature. The model considers the differential equations of mass, momentum, energy and chemical species conservation, and it was used for the study of different mixing devices for gas burning. Among the devices studied (AC), the AC5 was more effective in the use of the entire chamber volume, resulting in a lower dead zone percentage and a longer residence time of gases (5% more), when compared to the device used in the reference system. The volume fraction of CO and O2 distribution and flow streamlines into the combustion chamber allows concluding that internal mixing devices are necessary for a better mixture between fuel and oxidizer and, consequently, to produce gas combustion with better quality.