Resumo O tipo e uso cobertura do solo desempenham papel decisivo para a temperatura da superfície continental (LST). Como as cidades são compostas por coberturas variadas, incluindo vegetação, áreas construídas, prédios, estradas e áreas desprovidas de vegetação, compreender os padrões da LST no complexo espaço urbano se faz cada vez mais importante. O presente estudo investigou a relação da LST com o albedo, NDVI, NDWI, NDBI e NDBaI no período de 1994 e 2017. Foram utilizadas imagens dos sensores Thematic Mapper (TM) e Thermal Infrared Sensor (TIRS) a bordo dos satélites Landsat 5 e 8, respectivamente. As imagens foram processadas, reamostradas (resolução espacial de 120 m) no ambiente do software QGIS 3.0 e, por fim, foram extraídos centroides com um total de 1252 pontos. O modelo de regressão clássica (RC) foi aplicado às variáveis seguidas por modelos espaciais autoregressivos e de erro espacial (MEAR e MEE) e os resultados foram comparados a partir de índices de acurácia. Os resultados mostram que o maior coeficiente de correlação existe foi verificado entre albedo e NDBaI (r = 0,88). A relação entre o albedo e a LST, com r = 0,7, também é positiva e significativa ao nível de (р < 0,05). A partir do índice I de Moran Global verificou-se a dependência espacial e não estacionariedade da LST (I = 0,44). O modelo MEE apresentou as melhores métricas de acurácia (AIC = 3307,15 e R2 = 0,65) explicando consideravelmente mais variações na relação dos fatores explicativos e da LST para a região metropolitana de Belém, quando comparados aos modelos convencionais de RC.
Abstract The type of land use and land cover plays a decisive role in land surface temperature (LST). As cities are composed of varied covers, including vegetation, built-up areas, buildings, roads and areas without vegetation, understanding LST patterns in complex urban spaces is becoming increasingly important. The present study investigated the relationship between LST and albedo, NDVI, NDWI, NDBI and NDBaI in the period between 1994 and 2017. Images from Thematic Mapper (TM) and Thermal Infrared Sensor (TIRS) onboard the Landsat 5 and 8 satellites, respectively, were used in the study. The images were processed, resampled (spatial resolution of 120 m) in the environment of the QGIS 3.0 software and, finally, centroids were extracted resulting in a total of 1252 points. A classical regression (CR) model was applied to the variables, followed by spatial autoregressive (SARM) and spatial error (SEM) models, and the results were compared using accuracy indices. The results showed that the highest correlation coefficient was found between albedo and NDBaI (r = 0.88). The relationship between albedo and LST (r = 0.7) was also positive and significant at р < 0.05. The global Moran's I index showed spatial dependence and non-stationarity of the LST (I = 0.44). The SEM presented the best accuracy metrics (AIC = 3307.15 and R2 = 0.65) for the metropolitan region of Belém, explaining considerably more variations in the relationship between explanatory factors and LST when compared to conventional CR models.