OBJETIVO: Desenvolver um índice de co-morbidade a partir das condições clínicas e dos pesos do índice de co-morbidade de Charlson. MÉTODOS: As condições clínicas e pesos do índice de Charlson foram adaptados segundo a Classificação Internacional de Doenças 10a Revisão, e aplicados ao diagnóstico principal de internação hospitalar. Foram estudados 3.733 pacientes acima de 18 anos hospitalizados em hospital geral público do município do Rio de Janeiro, RJ, 2001-2003. A distribuição do índice foi de acordo com o gênero, tipo da admissão, presença de transfusão de sangue, admissão à unidade de terapia intensiva, idade e tempo de internação. Dois modelos de regressão logística foram desenvolvidos com o objetivo de prever a mortalidade hospitalar desses pacientes: a) com as variáveis acima e o índice de co-morbidade (modelo completo); e b) contendo apenas o índice e a idade dos pacientes (modelo reduzido). RESULTADOS: Dentre o total de pacientes analisados, 22,3% possuíam escores >1 para o índice e sua taxa de mortalidade foi 4,5% (66,0% dos quais com escores >1). Exceto gênero e do tipo de admissão, todas as variáveis foram retidas na regressão. Os modelos tiveram uma área sob a curva característica ROC igual a 0,86 (modelo completo) e 0,76 (modelo reduzido). Cada aumento de uma unidade nos escores do índice foi associado com um aumento de quase 50% na probabilidade de mortalidade hospitalar. CONCLUSÕES: O índice desenvolvido pôde discriminar probabilidades de mortalidade com uma eficácia aceitável, o que pode ser útil ao lidar-se com bancos de dados hospitalares com informação limitada.
OBJECTIVE: To develop a Charlson-like comorbidity index based on clinical conditions and weights of the original Charlson comorbidity index. METHODS: Clinical conditions and weights were adapted from the International Classification of Diseases, 10th revision and applied to a single hospital admission diagnosis. The study included 3,733 patients over 18 years of age who were admitted to a public general hospital in the city of Rio de Janeiro, southeast Brazil, between Jan 2001 and Jan 2003. The index distribution was analyzed by gender, type of admission, blood transfusion, intensive care unit admission, age and length of hospital stay. Two logistic regression models were developed to predict in-hospital mortality including: a) the aforementioned variables and the risk-adjustment index (full model); and b) the risk-adjustment index and patient's age (reduced model). RESULTS: Of all patients analyzed, 22.3% had risk scores >1, and their mortality rate was 4.5% (66.0% of them had scores >1). Except for gender and type of admission, all variables were retained in the logistic regression. The models including the developed risk index had an area under the receiver operating characteristic curve of 0.86 (full model), and 0.76 (reduced model). Each unit increase in the risk score was associated with nearly 50% increase in the odds of in-hospital death. CONCLUSIONS: The risk index developed was able to effectively discriminate the odds of in-hospital death which can be useful when limited information is available from hospital databases.
OBJETIVO: Desarrollar un índice de co-morbilidad a partir de las condiciones clínicas y de los pesos de índice original de co-morbilidad de Charlson. MÉTODOS: Las condiciones clínicas y pesos del índice de Charlson fueron adaptados según la Clasificación Internacional de Enfermedades - 10a Revisión, y aplicados al diagnóstico principal de internación hospitalaria. Fueron estudiados 3.733 pacientes arriba de 18 años hospitalizados en el hospital general público del municipio de Rio de Janeiro (sudeste de Brasil), de 2001-2003. La distribución del índice fue de acuerdo con el género, tipo de admisión, presencia de transfusión de sangre, admisión a la unidad de terapia intensiva, edad y tiempo de internación. Dos modelos de regresión logística fueron desarrollados con el objetivo de prevenir la mortalidad hospitalaria: a) con las variables arriba y el índice de co-morbilidad (modelo completo); y b) conteniendo solo el índice y la edad de los pacientes (modelo reducido). RESULTADOS: Dentro del total de pacientes analizados, 22,3% tuvieron puntajes >1 para el índice y su taza de mortalidad fue 4,5% (66,0% de los cuales con puntajes >1). A excepción del género y del tipo de admisión todas las variables fueron retenidas en la regresión. Los modelos tuvieron una área bajo la curva característica ROC igual a 0,86 (modelo completo) y 0,76 (modelo reducido). Cada aumento de una unidad en los puntajes del índice fue asociado con un aumento de casi 50% en la probabilidad de mortalidad hospitalaria. CONCLUSIONES: El índice desarrollado puede discriminar probabilidades de mortalidad con una eficacia aceptable, el que puede ser útil al ser usado con bancos de datos hospitalarios con información limitada.