RESUMO Objetivou-se avaliar o poder preditivo do modelo do National Research Council (NRC) para gado leiteiro em estimar o consumo de matéria seca (CMS) por vacas mestiças, em pastagens tropicais. Foi efetuada uma análise conjunta de cinco estudos, contemplando três forrageiras. Foram avaliadas 132 estimativas individuais do CMS observado (CMSObs), obtidas por meio do indicador externo Cr2O3. O CMS também foi predito por meio do software do NRC (CMSPred), que, por sua vez, foi abastecido com inputs referentes aos animais e ao ambiente de criação. Os valores de CMSPred (12,7±1,6kg/d) foram semelhantes aos de CMSObs (12,3±3,3kg/d). Foram obtidas as seguintes estimativas da avaliação do poder preditivo do modelo: viés médio (-0,419kg/d), coeficiente de determinação (0,029), coeficiente de correlação (0,17; P=,051), quadrado médio do erro de predição (11,844±20,034), fator de eficiência do modelo (-0,081), coeficiente de determinação do modelo (4,1032) e fator de correção do viés (0,767). A comparação entre CMSObs e CMSPred permitiu identificar a tendência de superestimação das predições se considerado o ajuste por meio de regressão robusta para o modelo linear simples sem intercepto. Nas condições avaliadas, o modelo produz predições de CMS com satisfatória exatidão, porém com baixa precisão.
ABSTRACT The aim of the present study was to evaluate the predictive power of estimating the dry matter intake (DMI) of crossbred cows on tropical pastures by the National Research Council (NRC) equation for dairy cattle. A joint analysis of five studies covering three forages was performed in which 132 individual estimates of observed DMI obtained through Cr2O3 as a marker. DMI was also predicted from the NRC (DMIPred) software with inputs concerning animals and breeding environment of the studies used. Predicted DMIPred average values (12.7±1.6kg/d) were similar to the observed DMIObs ones (12.3±3.3kg/d). We obtained the following estimates of the evaluation of the predictive power of the model: average bias (- 0.419kg/d), coefficient of determination (0.029), Person’s correlation coefficient (0.17, P= 0.051), mean square error of prediction (11,844±20,034), model efficiency factor (- 0.081), coefficient of determination (4.1032), and bias correction factor (0.767). The comparison between DMIObs and DMIPred values allowed the identification of the overestimating tendency of the predictions demonstrated by the robust regression fit of the simple linear no intercept model. Nevertheless, the model yields predictions with satisfactory accuracy, but with low precision.