Resumo: Um desafio bem conhecido é prever as transformações que ocorrem durante a soldagem das ligas metálicas com o objetivo de controlar as propriedades da solda. Desta forma, este estudo apresenta um modelo Termo-Mecânico-Metalúrgico para predizer numericamente a história térmica, as transformações de fase no estado sólido, a microestrutura de solidificação e a distribuição de dureza durante e após a soldagem de aços de alta resistência e baixa liga. O modelo foi implementado numericamente em um código computacional próprio baseado no Método dos Volumes Finitos, o que permitiu rastrear e calcular dinamicamente as frações volumétricas de ferrita, perlita, bainita e martensita na zona afetada pelo calor, além da formação e determinação do espaçamento do braço dendrítico na zona de fusão, enquanto que a distribuição da dureza na zona afetada pelo calor foi calculada aplicando-se a regra da mistura de fases. Para tanto, soldas autógenas usando o processo Gas Tungsten Arc Welding de passe único foram simuladas numericamente e experimentalmente realizadas em amostras do aço de alta resistência e baixa liga AISI 4130, incluindo seu pré-aquecimento com o objetivo de avaliar a eficácia do modelo proposto para simular a soldagem de peças em diferentes condições térmicas iniciais, tendo sido obtida uma estreita concordância entre os resultados calculados e experimentais.
Abstract: A well-known challenge is to predict the transformations occurring during the metal alloys welding aiming to control the weldment properties. Thus, this study presents a Thermo-Mechanical-Metallurgical model to numerically predict the thermal history, the solid-state phase transformations, the solidification microstructure and the hardness distribution during and after the welding of high strength low-alloy steels. The model was numerically implemented in an in-house computational code based on the Finite Volume Method, which allowed to dynamically track and calculate the volume fractions of ferrite, pearlite, bainite and martensite at the heat-affected zone, besides the formation and determination of dendrite arm spacing at the fusion zone, whereas the hardness distribution at the heat-affected zone was calculated by applying the phase mixture rule. For this, single-pass autogenous Gas Tungsten Arc Welding welds were numerically simulated and experimentally carried out on high strength low-alloy AISI 4130 steel samples, including their preheating to evaluate the effectiveness of the proposed model to simulate the workpieces welding in different initial thermal conditions and a close agreement between the calculated and experimental results were obtained.