Ao longo dos últimos anos, diversos trabalhos têm sido desenvolvidos a fim de se modelar quantitativamente o efeito GMI (Magnetoimpedância Gigante). No entanto, esses modelos adotam simplificações que afetam significativamente seu desempenho teórico-experimental e sua generalidade, e ainda são raros os modelos quantitativos que incorporam parâmetros geradores de assimetria - AGMI (GMI assimétrica) - como, por exemplo, o nível CC da corrente de excitação das amostras GMI. Este trabalho objetiva o desenvolvimento de um novo modelo, suficientemente geral, que incorpore inclusive a assimetria induzida pelo nível CC da corrente de excitação, capaz de guiar os procedimentos experimentais de caracterização das amostras GMI. Assim, este artigo propõe, apresenta e discute a utilização de um modelo computacional baseado em Redes Neurais feedforward Multilayer Perceptron na modelagem da sensibilidade de módulo e fase da impedância do efeito GMI em função do campo magnético, para ligas ferromagnéticas amorfas de composição Co70Fe5Si15B10. O modelo proposto permite a obtenção da sensibilidade a partir de alguns dos principais parâmetros que a afetam: comprimento das amostras, nível CC e frequência da corrente de excitação e campo magnético externo.
Over the past few years, several studies have been developed in order to quantitatively model the GMI effect (Giant Magnetoimpedance). However, these models adopt simplifications that significantly affect its theoretical-experimental performance and its generalization capability, and models that incorporate parameters that generate asymmetry - AGMI (asymmetric GMI) - such as the DC level of the excitation current of the GMI samples are still rare. This work aims to develop a new model, sufficiently general, which also incorporates the asymmetry induced by the DC level of the excitation current, capable of guiding the experimental procedures of characterization of the GMI samples. Thus, this paper proposes, presents and discusses the use of a computational model based on feedforward Multilayer Perceptron Neural Networks to model the impedance magnitude sensitivity and impedance phase sensitivity, of the GMI effect, as functions of the magnetic field, for Co70Fe5Si15B10 ferromagnetic amorphous alloys. The proposed model allows obtaining these sensitivities based on some of the main parameters that affect it: length of the samples, DC level and frequency of the excitation current and the external magnetic field.