Objective: To estimate the excess deaths attributed to influenza in Spain, using age-specific generalized linear models (GLM) and the Serfling model for the period 1999-2005. Method: We reviewed mortality from influenza and pneumonia and all-cause deaths. We used an additive GLM procedure, including the numbers of weekly deaths as a response variable and the number of influenza virus and respiratory syncytial virus weekly isolates, the population and two variables to adjust for annual fluctuations as covariates. Using the Serfling model, we removed the trend and applied a temporal regression model, excluding data from December to April to account for the expected baseline mortality in the absence of influenza activity. Results: Globally, the excess mortality attributable to influenza was 1.1 deaths per 100,000 for influenza and pneumonia and 11 all-cause deaths per 100,000 using the GLM model. The highest mortality rates were obtained with the Serfling model in adults older than 64 years, with an excess mortality attributable to influenza of 57 and 164 deaths per 100,000 for influenza and pneumonia and all-cause, respectively. Conclusions: The GLM model, which takes viral activity into account, yields systematically lower estimates of excess mortality than the Serfling model. The GLM model provides independent estimates associated with the activity of different viruses and even with other factors, which is a significant advantage when trying to understand the impact of viral respiratory infections on mortality in the Spanish population.
Objetivo: Estimar los excesos de mortalidad atribuible a la gripe en España por grupos de edad, usando modelos lineales generalizados (MLG) y modelos Serfling, para el periodo 1999-2005. Método: Se revisó la mortalidad por gripe y neumonía y por todas las causas. En el MLG aditivo se incluyó como variable respuesta el número de defunciones semanales, y como covariables el número de aislamientos semanales de virus de la gripe y de virus respiratorio sincitial, la población y dos variables que corrigen las fluctuaciones anuales. En el modelo Serfling se eliminó previamente la tendencia y se aplicó un modelo de regresión cíclica, excluyendo los valores desde diciembre hasta abril, para cuantificar la mortalidad esperada en ausencia de actividad gripal. Resultados: El exceso de mortalidad atribuible a la gripe fue de 1,1 defunciones por 100.000 habitantes por gripe y neumonía, y de 11 defunciones por todas las causas usando el MLG. Las tasas de mortalidad más altas se observaron con el modelo Serfling en los mayores de 64 años, con un exceso de mortalidad de 57 y 164 defunciones por 100.000 habitantes por gripe y neumonía y por todas las causas, respectivamente. Conclusiones: El MLG tiene en cuenta la actividad viral y produce de forma sistemática estimaciones de exceso de mortalidad más bajas que el modelo Serfling. El MLG tiene la ventaja de dar estimaciones independientes asociadas a la actividad de diferentes virus y otros factores, lo cual representa un paso importante cuando intentamos entender el impacto de las infecciones virales respiratorias en la mortalidad de nuestra población.