RESUMO Os hidrogéis, redes poliméricas reticuladas capazes de absorver e reter uma grande quantidade de água devido à sua natureza hidrofílica, chamam a atenção para aplicações na Engenharia Tecidual. Ainda, esses materiais oferecem o potencial de projetar arcabouços partindo do seu comportamento pseudoplástico, o que é fundamental para impressão tridimensional (3D) baseada em extrusão. A adição de Laponita, um nanosilicato bidimensional em forma de disco, permite modificar o comportamento reológico de alguns géis, criando uma condição otimizada. Neste estudo, foi realizada a caracterização reológica do hidrogel compósito PEG-Laponita-alginato (PL-Alg) e de seu gel precursor PEG-Laponita (PL), visando futuramente a bioimpressão 3D. Inicialmente, foi avaliado o comportamento reológico de diferentes concentrações de Laponita no compósito PL. Verificou-se que a viscosidade da solução de PEG aumentou drasticamente como uma função da adição de Laponita, de modo que se observou um comportamento reológico não-Newtoniano fortemente pseudoplástico. O efeito dos diferentes teores de Laponita também pode ser notado para o compósito (PL-Alg), mantendo-se fixa a concentração de PEG e alginato, sendo este último adicionado com o intuito de ser um segundo precursor de rede para reticular o hidrogel de PEG-Laponita. Ainda, todos os compósitos apresentaram uma recuperação parcial da viscosidade em função do tempo, após a aplicação de cisalhamento, parâmetro a ser considerado no desenvolvimento de biotintas. Os arcabouços de PL-Alg foram impressos contendo até 10 camadas e colocados em uma solução de CaCl2 para a reticulação das cadeias do alginato. Posteriormente, testes in vitro foram realizados, mostrando que a dissolução da rede do hidrogel compósito foi mais crítica para a amostra com 5% de Laponita. Em conclusão, para trabalhos futuros deverá ser considerada a maneira mais apropriada de reticulação da cadeia de PEG, para melhorar as propriedades mecânicas e a resistência à degradação, viabilizando a utilização do sistema PEG-Laponita-alginato para aplicações em bioimpressão 3D.
ABSTRACT Hydrogels, crosslinked polymeric networks capable of absorbing and retaining a large number of water due to their hydrophilic nature, draws attention to Tissue Engineering applications. These materials offer the potential to design scaffolds based on their pseudoplastic behavior, which is essential for extrusion-based three-dimensional (3D) printing. The addition of Laponite, a two-dimensional disk-shaped nanosilicate, allows modifying the rheological behavior of some gels, creating an optimized condition for 3D printing. In this study, the rheological characterization of the composite hydrogel PEG-Laponite-Alginate (PL-Alg) and its precursor gel PEG-Laponite (PL) was carried out, aiming in the future for 3D bioprinting of constructs. Initially, the rheological behavior of different concentrations of Laponite in the PL composite was evaluated. The viscosity of the PEG-400 increased dramatically as a function of the addition of Laponite, characterizing a strong shear-thinning and solid-like rheological behavior, ideal for 3D printing. The effect of different levels of Laponite can also be noted for the composite (PL-Alg), keeping the concentration of PEG400 and alginate fixed, the latter being added as a second network precursor to crosslink the PEG-Laponite hydrogel. Besides, all composites showed a partial recovery of viscosity as a function of time after the application of shear. This rheological parameter must be considered in the development of a bioink. PL-Alg scaffolds containing Laponite were printed containing up to 10 layers and placed in a CaCl2 solution to promote crosslinking of the alginate chains. Subsequently, in vitro tests were performed in phosphate-buffered saline solution, showing that the dissolution of the composite hydrogel network was more critical for the sample with 5% Laponite. In conclusion, for future work, the most appropriate way of crosslinking the PEG chain should be considered to improve the mechanical properties and the resistance to degradation, enabling the use of the PEG-Laponite-Alginate system as a bioink for 3D bioprinting applications.