OBJETIVO: Avaliar as redes neurais recorrentes enquanto técnica preditiva para séries temporais em saúde. MÉTODOS: O estudo foi realizado durante uma epidemia de cólera ocorrida no Estado do Ceará, em 1993 e 1994, a partir da sobremortalidade tendo como causa básica as infecções intestinais mal definidas (CID-9). O número mensal de óbitos por essa causa, referente ao período de 1979 a 1995 no Estado do Ceará, foram obtidos do Sistema de Informação de Mortalidade (SIM) do Ministério da Saúde. Estruturou-se uma rede com dois neurônios na camada de entrada, 12 na camada oculta, um neurônio na camada de saída e um na camada de memória. Todas as funções de ativação eram a função logística. O treinamento foi realizado pelo método de backpropagation, com taxa de aprendizado de 0,01 e momentum de 0,9, com dados de janeiro de 1979 a junho de 1991. O critério para fim do treinamento foi atingir 22.000 epochs. Compararam-se os resultados com os de um modelo de regressão binomial negativa. RESULTADOS: A predição da rede neural a médio prazo foi adequada, em dezembro de 1993 e novembro e dezembro de 1994. O número de óbitos registrados foi superior ao limite do intervalo de confiança. Já o modelo regressivo detectou sobremortalidade a partir de março de 1992. CONCLUSÕES: A rede neural se mostrou capaz de predição, principalmente no início do período, como também ao detectar uma alteração concomitante e posterior à ocorrência da epidemia de cólera. No entanto, foi menos precisa do que o modelo de regressão binomial, que se mostrou mais sensível para detectar aberrações concomitantes à circulação da cólera.
OBJECTIVE: To evaluate recurrent neural networks as a predictive technique for time-series in the health field. METHODS: The study was carried out during a cholera epidemic which took place in 1993 and 1994 in the state of Ceará, northeastern Brazil, and was based on excess deaths having 'poorly defined intestinal infections' as the underlying cause (ICD-9). The monthly number of deaths with due to this cause between 1979 and 1995 in the state of Ceará was obtained from the Ministry of Health's Mortality Information System (SIM). A network comprising two neurons in the input layer, twelve in the hidden layer, one in the output layer, and one in the memory layer was trained by backpropagation using the fist 150 observations, with 0.01 learning rate and 0.9 momentum. Training was ended after 22,000 epochs. We compare the results with those of a negative binomial regression. RESULTS: ANN forecasting was adequate. Excessive mortality (number of deaths above the upper limit of the confidence interval) was detected in December 1993 and October/November 1994. However, negative binomial regression detected excess mortality from March 1992 onwards. CONCLUSIONS: The artificial neural network showed good predictive ability, especially in the initial period, and was able to detect alterations concomitant and a subsequent to the cholera epidemic. However, it was less precise that the binomial regression model, which was more sensitive to abnormal data concomitant with cholera circulation.