Background: Hospitalizations are undesirable events that can be avoided to some degree through proactive interventions. The objective of this study is to determine the capability of models based on Adjusted Clinical Groups (ACG), in our milieu, to identify patients who will present unplanned admissions in the following months to their classification, in both the general population and in subpopulations of chronically ill patients (diabetes mellitus, chronic obstructive pulmonary disease and heart failure). Methods: Cross-sectional study which analyzes data from a two year period, of all residents over 14 years old in the Basque Country (N = 1,964,337). Data from the first year (demographic, deprivation index, diagnoses, prescriptions, procedures, admissions and other contacts with the health service) were used to construct the independent variables; hospitalizations of the second year, the dependent ones. We used the area under the ROC curve (AUC) to evaluate the capability of the models to discriminate patients with hospitalizations and calculated the positive predictive value and sensitivity of different cutoffs. Results: In the general population, models for predicting admission at 6 and 12 months, as well as long-term hospitalizations showed a good performance (AUC> 0.8), while it was acceptable (AUC 0.7 to 0.8) in the groups of chronic patients. Conclusions: A hospitalization risk stratification system, based on ACG, is valid and applicable in our milieu. These models allow classifying the patients on a scale of high to low risk, which makes possible the implementation of the most expensive preventive interventions to only a small subset of patients, while other less intensive ones can be provided to larger groups.
Fundamentos: La hospitalizaciones son eventos indeseables que en ocasiones pueden ser evitados mediante intervenciones proactivas. El objetivo del estudio es determinar la capacidad de modelos basados en Adjusted Clinical Groups (ACGs) en nuestro medio para identificar a los pacientes que presentarán ingresos no programados en los meses siguientes a su clasificación, tanto en la población general como en subpoblaciones de enfermos crónicos (diabetes mellitus, enfermedad pulmonar obstructiva crónica e insuficiencia cardiaca). Métodos: Estudio transversal que analizó información de un periodo de 2 años, de todos los residentes en Euskadi mayores de 14 años de edad (n=1.964.337). Los datos del primer año (demográficos, índice de privación socioeconómica, diagnósticos, prescripciones, procedimientos, ingresos y otros contactos con el servicio de salud) sirvieron para construir las variables independientes. Las hospitalizaciones del segundo año, las dependientes. Se empleó el área bajo la curva ROC (AUC) para evaluar la capacidad de los modelos en discriminar a los pacientes con hospitalizaciones y se calculó el valor predictivo positivo y la sensibilidad en diferentes puntos de corte. Resultados: En la población general, los modelos para predecir ingresos a los 6 y 12 meses así como hospitalizaciones prolongadas mostraron un comportamiento bueno (AUC>0,8), mientras que fue aceptable (AUC 0,7-0,8) en los grupos de pacientes crónicos. Conclusiones: Un sistema de estratificación de riesgo de ingresos, basado en ACGs resulta válido y aplicable en nuestro medio. Estos modelos permiten clasificar a los pacientes en una escala de mayor a menor riesgo, lo cual hace posible la aplicación de las intervenciones preventivas más costosas solamente a un pequeño subgrupo de pacientes, mientras que otras menos intensivas pueden proporcionarse a grupos más amplios.