Resumo Mudanças na precipitação e na temperatura do ar podem produzir diferentes impactos no regime hidrológico, causando colapso no abastecimento de água. Este estudo focaliza nos impactos das mudanças climáticas na bacia do Rio Verde (VRB), uma bacia hidrográfica de cabeceira no sudeste do Brasil, localizada em Minas Gerais. O modelo hidrológico Variable Infiltration Capacity (VIC) foi calibrado e validado na bacia do Rio Verde. O downscaling (Modelo de Clima Regional Eta, com resolução de 20 km) de três Modelos de Circulação Global (CanESM2, HadGEM2-ES e MIROC5) foram usados no VIC com dados históricos (1961-2005) e em três intervalos de tempo (2011- 2040, 2041-2070 e 2071-2099), nos cenários RCPs 4.5 e 8.5. Os cenários foram usados como entrada no modelo hidrológico após a correção do viés. O modelo hidrológico (VIC) apresentou desempenho estatístico satisfatório na calibração e validação, com CNS variando de 0,77 a 0,85 para as vazões diárias e mensais; no entanto, superestimou alguns fluxos de pico e subestimou os de recessão. A média do conjunto de modelos prevê aumentos da temperatura média mensal mínima e máxima no final do século. O Eta-CanESM2 indicou maiores temperaturas, principalmente para RCP8.5 no final do século, enquanto Eta-HadGEM2-ES apresentou a maior redução na precipitação para RCP4.5 no início do século e para RCP8.5 no final do século, impactando negativamente na evapotranspiração e vazão. Entre os Modelos Climáticos Regionais (MCRs), o Eta-MIROC5 apresentou pequenas alterações nos componentes do ciclo hidrológico. Este estudo sugere que Modelos de Circulação Global representam incertezas adicionais, que devem ser consideradas na avaliação do impacto das mudanças climáticas.
Abstract Changes in precipitation and air temperature may produce different impacts on the hydrological regime, compromising water supply. This study focuses on climate change impacts in the Verde River Basin (VRB), a tropical headwater basin in southeast Brazil, located in the state of Minas Gerais. The Variable Infiltration Capacity model (VIC) was calibrated and validated in the Verde River Basin. The downscaling (Eta Regional Climate Model, at 20-km resolution) of three Global Circulation Models (CanESM2, HadGEM2-ES and MIROC5) were used to drive the VIC for a historical baseline (1961-2005) and three time-slices (2011-2040, 2041-2070 and 2071-2099), under RCPs 4.5 and 8.5 scenarios. The scenarios were used as input in the hydrological model after bias correction. The hydrological model (VIC) showed satisfactory statistical performance in calibration and validation, with CNS varying from 0.77 to 0.85 for daily and monthly discharges; however, it overestimated some peak flows and underestimated the recession flows. Multi-model ensemble means predict increases of the minimum and maximum monthly average temperature for the investigated area at the end of the century. The Eta-CanESM2 indicated greater warming, mainly for RCP8.5 at the end the century, whereas Eta-HadGEM2-ES showed higher reduction in the precipitation for RCP4.5 at the beginning of the century and for RCP8.5 at the end the century, negatively impacting the evapotranspiration and discharge. Among the Regional Climate Models (RCMs), the Eta-MIROC5 showed minor changes in the components of the hydrological cycle. This study suggests that Global Circulation Models represent an additional uncertainty, which should be accounted for in the climate change impact assessment.