Abstract:
En
|
Text:
En
|
PDF:
En
In breast cancer patients submitted to neoadjuvant chemotherapy (4 cycles of doxorubicin and cyclophosphamide, AC), expression of groups of three genes (gene trio signatures) could distinguish responsive from non-responsive tumors, as demonstrated by cDNA microarray profiling in a previous study by our group. In the current study, we determined if the expression of the same genes would retain the predictive strength, when analyzed by a more accessible technique (real-time RT-PCR). We evaluated 28 samples already analyzed by cDNA microarray, as a technical validation procedure, and 14 tumors, as an independent biological validation set. All patients received neoadjuvant chemotherapy (4 AC). Among five trio combinations previously identified, defined by nine genes individually investigated (BZRP, CLPTM1,MTSS1, NOTCH1, NUP210, PRSS11, RPL37A, SMYD2, and XLHSRF-1), the most accurate were established by RPL37A, XLHSRF-1based trios, with NOTCH1 or NUP210. Both trios correctly separated 86% of tumors (87% sensitivity and 80% specificity for predicting response), according to their response to chemotherapy (82% in a leave-one-out cross-validation method). Using the pre-established features obtained by linear discriminant analysis, 71% samples from the biological validation set were also correctly classified by both trios (72% sensitivity; 66% specificity). Furthermore, we explored other gene combinations to achieve a higher accuracy in the technical validation group (as a training set). A new trio, MTSS1, RPL37 and SMYD2, correctly classified 93% of samples from the technical validation group (95% sensitivity and 80% specificity; 86% accuracy by the cross-validation method) and 79% from the biological validation group (72% sensitivity and 100% specificity). Therefore, the combined expression of MTSS1, RPL37 and SMYD2, as evaluated by real-time RT-PCR, is a potential candidate to predict response to neoadjuvant doxorubicin and cyclophosphamide in breast cancer patients.