The description of a method for automatic extraction of term candidates from the medical field by applying linguistic information is presented. Lexicography, morphological and syntactic rules were used. First, the detection was performed by applying a standard dictionary that assigned the tag ´MED´ (‘MEDICAL’) to the words that could be considered terms. Morphological and syntactic rules were used to try to deduce the part of speech of the words that were not considered in the dictionary (WNCD). Afterwards, nominal phrases that included WNCD and MED were gathered to extract them as term candidates of the field. Smorph, Post Smorph Module (MPS) – both work in groups– and Xfst were the software used. Smorph performs the morphological analysis of character strings and MPS works on local grammar. Xfst is a finite state tool that works on character strings assigning previously stated categories to allow the automatic analysis of expressions. This method was tested on a section of the corpus of clinical cases collected by Burdiles (2012) of 217258 words. The results showed 92.58% of precision, 95.02% of recall and 93.78% of F-measure.
Se presenta la descripción de un método de extracción automática de candidatos a términos del área médica a partir del procesamiento de información lingüística. Para ello, se trabajó con reglas en el nivel léxico, morfológico y sintáctico. En primer lugar, se realizó la detección aplicando un diccionario estándar, el cual asignó a las palabras consideradas términos, la etiqueta MED (MÉDICO). Luego, para las palabras que no estaban contempladas en el diccionario (PNCD), se dedujeron las categorías gramaticales apelando a reglas morfológicas y sintácticas. Posteriormente, se procedió a la conformación de sintagmas nominales que involucraban PNCD y MED, para extraerlos como candidatos a términos del dominio. Se utilizaron los softwares Smorph y Módulo Post Smorph (MPS), que trabajan en bloque, y Xfst. Smoprh realiza el análisis morfológico y MPS trabaja sobre gramáticas locales. Xfst, por su parte, es una herramienta de estados finitos que opera sobre cadenas de caracteres, a las que asigna categorías previamente declaradas. El método se probó en una parte del corpus de casos clínicos compilado por Burdiles (2012), que contenía 217258 palabras, y los resultados arrojaron una precisión de 92,58%, una cobertura de 95,02% y una medida f de 93,78%.