A dengue é doença reemergente e uma das mais importantes doenças virais transmitida por mosquito. O clima é considerado um fator relevante na distribuição temporal e espacial das doenças transmitidas por vetores. O objetivo deste trabalho foi estudar o efeito de fatores sazonais e a relação entre as variáveis climáticas e o risco de dengue, na cidade do Rio de Janeiro, Brasil, entre 2001 e 2009. Foram utilizados modelos lineares generalizados, com distribuição Poisson e binomial negativa. O modelo com melhor ajuste foi o controlado por variáveis indicadoras do ano, que apresentou as variáveis temperatura mínima e precipitação, ambas com defasagem de um mês. Nesse modelo, o aumento de um grau na temperatura mínima em um mês leva ao aumento de 45% no número de casos de dengue no mês seguinte, enquanto o aumento em 10 milímetros na precipitação leva ao aumento de 6% no número de casos de dengue no mês seguinte. A transmissão da dengue está relacionada a muitos fatores; o impacto do clima, apesar de ainda não ser bem entendido, é apontado como crítico ao facilitar análise de risco de epidemias.
Dengue, a reemerging disease, is one of the most important viral diseases transmitted by mosquitoes. Climate is considered an important factor in the temporal and spatial distribution of vector-transmitted diseases. This study examined the effect of seasonal factors and the relationship between climatic variables and dengue risk in the city of Rio de Janeiro, Brazil, from 2001 to 2009. Generalized linear models were used, with Poisson and negative binomial distributions. The best fitted model was the one with "minimum temperature" and "precipitation", both lagged by one month, controlled for "year". In that model, a 1°C increase in a month's minimum temperature led to a 45% increase in dengue cases in the following month, while a 10-millimeter rise in precipitation led to a 6% increase in dengue cases in the following month. Dengue transmission involves many factors: although still not fully understood, climate is a critical factor, since it facilitates analysis of the risk of epidemics.