The aim of this study was to generate calibration equations to predict the nutritional chemical composition of the Italian rye grass (RG) (Lolium multiflorum Lam) by near infrared spectroscopy (NIRS). A total of 75 samples of RG of different harvesting weeks were collected from the IVITA Research Center in Huancayo (Peru). Spectrum capture was performed using NIRS and the chemical analysis was done for reference of the following components: crude protein (CP), ether extract (EE), total ash (CZ), crude fibre (CF) and neutral detergent fibre (NDF). A calibration and validation model by partial least squares (PLS) was developed and the correlation coefficient (R), coefficient of determination (R2), root mean square error of calibration (RMSEC), root mean square error of prediction (RMSEP), ratio range with error (RER) and residual predictive deviation (RPD) were used as statistics of accuracy and precision. Proximate analysis means were: PC = 19.02%, EE = 4.53%, CZ = 12.79%, FC = 16.50% and NDF 60.98%. High values of R2 and low values of RMSEC and RMSEP were obtained for PC (0.96, 1.02, 1.19), EE (0.94, 0.29, 1.05), CZ (0.90, 0.57, 0.92) and NDF (0.90, 1.01, 1.25, respectively). The largest RER (22.34) and RPD (4.90) were obtained for EE. It is concluded that the calibration and validation equations obtained by NIRS enable optimal quantitative prediction of PC, EE, CZ and NDF in Italian rye grass (Lolium multiflorum Lam)
El objetivo del presente estudio fue generar ecuaciones de calibración que permitan predecir la composición químico nutricional de la especie forrajera rye grass italiano (RG) (Lolium multiflorum Lam) mediante la técnica de Espectroscopía de Reflectancia en Infrarrojo Cercano (NIRS). Se colectaron 75 muestras de RG de diferentes semanas de corte provenientes de los campos experimentales del Centro de Investigacion IVITA-El Mantaro (Huancayo, Perú), a las cuales se les realizó la captura del espectro mediante equipo NIRS y se hizo el análisis químico de referencia para los componentes proteína cruda (PC), extracto etéreo (EE), cenizas totales (CZ), fibra cruda (FC) y fibra detergente neutro (FDN). Se desarrolló un modelo de calibración y validación mediante mínimos cuadrados parciales (PLS) y como estadísticos de exactitud y precisión se utilizaron el coeficiente de correlación (R), coeficiente de determinación (R2), raíz cuadrada media del error de calibración (RMSEC), raíz cuadrada media del error de predicción (RMSEP), proporción del rango con el error (RER) y desviación residual predictiva (RPD). El análisis proximal promedio fue para PC=19.02%, EE=4.53%, CZ=12.79%, FC=16.50% y FDN=60.98%. Altos valores de R2 y bajos RMSEC y RMSEP fueron obtenidos para PC (0.96, 1.02, 1.19), EE (0.94, 0.29, 1.05), CZ (0.90, 0.57, 0.92) y FDN (0.90, 1.01, 1.25, respectivamente). El mayor RER (22.34) y RPD (4.90) se obtuvo para EE. Se concluye que las ecuaciones de calibración y validación NIRS obtenidas permiten una óptima predicción cuantitativa de PC, EE, CZ y FDN en rye grass italiano (Lolium multiflorum Lam)