Durante o período de pós-comercialização, quando medicamentos são usados por grandes populações e por períodos de tempo maiores, eventos adversos (EA) inesperados podem ocorrer, o que pode alterar a relação risco-benefício dos medicamentos o suficiente para exigir uma ação regulatória. Eventos adversos são agravos à saúde que podem surgir durante o tratamento com um produto farmacêutico, os quais, no período de pós-comercialização do medicamento, podem requerer um aumento significativo de cuidados de saúde e resultar em danos desnecessários aos pacientes, muitas vezes fatais. Portanto, o quanto antes, a descoberta de EA no período de pós-comercialização é um objetivo principal do sistema de saúde. Alguns países possuem sistemas de vigilância farmacológica responsáveis pela coleta de relatórios voluntários de EA na pós-comercialização, mas estudos já demonstraram que, com a utilização de redes sociais, pode-se conseguir um número maior e mais rápido de relatórios. O objetivo principal deste projeto é construir um sistema totalmente automatizado que utilize o Twitter como fonte para encontrar EA novos e já conhecidos e fazer a análise estatística dos dados obtidos. Para isso, foi construído um sistema que coleta, processa, analisa e avalia tweets em busca de EA, comparando-os com dados da Agência Americana de Controle de Alimentos e Medicamentos (FDA) e do padrão de referência construído. Nos resultados obtidos, conseguimos encontrar EA novos e já existentes relacionados ao medicamento doxiciclina, o que demonstra que o Twitter, quando utilizado em conjunto com outras fontes de dados, pode ser útil para a farmacovigilância.
During the post-marketing period, when medicines are used by large population contingents and for longer periods, unexpected adverse events (AE) can occur, potentially altering the drug’s risk-benefit ratio enough to demand regulatory action. AE are health problems that can occur during treatment with a pharmaceutical product, which in the drug’s post-marketing period can require a significant increase in health care and result in unnecessary and often fatal harm to patients. Therefore, a key objective for the health system is to identify AE as soon as possible in the post-marketing period. Some countries have pharmacovigilance systems responsible for collecting voluntary reports of post-marketing AE, but studies have shown that social networks can be used to obtain more and faster reports. The current project’s main objective is to build a totally automated system using Twitter as a source to detect both new and previously known AE and conduct the statistical analysis of the resulting data. A system was thus built to collect, process, analyze, and assess tweets in search of AE, comparing them to U.S. Food and Drug Administration (FDA) data and the reference standard. The results allowed detecting new and existing AE related to the drug doxycycline, showing that Twitter can be useful in pharmacovigilance when employed jointly with other data sources.
Durante el período de poscomercialización, cuando grandes poblaciones consumen medicamentos durante períodos más prolongados de tiempo, se pueden producir eventos adversos (EA) inesperados, lo que puede alterar la relación riesgo-beneficio de los medicamentos. Esta situación es suficiente para exigir una acción regulatoria. Los EA son agravios a la salud que pueden surgir durante el tratamiento con un producto farmacéutico, los cuales, durante el período de poscomercialización del medicamento, pueden requerir un aumento significativo de cuidados de salud y resultar en lesiones innecesarias para los pacientes, muchas veces fatales. Por lo tanto, el hallazgo anticipado de EA durante el período de poscomercialización es un objetivo primordial del sistema de salud. Algunos países cuentan con sistemas de vigilancia farmacológica, responsables de la recogida de informes voluntarios de EA durante la poscomercialización, pero algunos estudios ya demostraron que, con la utilización de las redes sociales, se puede conseguir un número de informes mayor y más rápido. El objetivo principal de este proyecto es construir un sistema totalmente automatizado que utilice Twitter como fuente para encontrar nuevos EA y ya conocidos, además de realizar un análisis estadístico de los datos obtenidos. Para tal fin, se construyó un sistema que recoge, procesa, analiza y evalúa tweets en búsqueda de eventos adversos, comparándolos con datos de la Agencia Americana de Control de Alimentos y Medicamentos (FDA) y del estándar de referencia construido. En los resultados obtenidos, conseguimos encontrar nuevos eventos adversos y ya existentes, relacionados con el medicamento doxiciclina, lo que demuestra que Twitter, cuando es utilizado junto a otras fuentes de datos, puede ser útil para la farmacovigilancia.