Cascas de mandioca provenientes de resíduos de fecularias são altamente perecíveis. A secagem apresenta-se como alternativa na armazenagem segura e livre do desenvolvimento de micro-organismos, para a produção de farinha com aplicabilidade na alimentação humana. Este trabalho objetivou estudar a cinética e modelagem da secagem de cascas de mandioca, utilizando-se planejamento experimental central composto rotacional. Foram realizados 11 testes, empregando-se diferentes temperaturas (53ºC, 55ºC, 60ºC, 65ºC e 67ºC) e fluxos de ar (0,0159 m³ kg-1 s-1; 0,0166 m³ kg-1 s-1; 0,0183 m³ kg-1 s-1; 0,0199 m³ kg-1 s-1; e 0,0206 m³ kg-1 s-1). A secagem foi realizada em secador convencional de bandejas, sendo determinados os tempos de secagem, parâmetros instrumentais de cor (luminosidade - L*; coordenadas a* e b*), acidez titulável e pH das amostras de farinha obtidas após moagem das cascas desidratadas de cada ensaio de secagem. Observou-se tendência ao clareamento do material, com o aumento da temperatura. Ocorreu pequena variação nos valores de acidez titulável e pH das amostras analisadas. A temperatura e a velocidade do ar influenciaram na cinética de secagem, pois, com o aumento de ambas, o tempo de secagem das cascas foi reduzido. O tempo mínimo de secagem (420 min.) foi obtido quando a temperatura do secador foi ajustada para 67ºC e o fluxo de ar para 0,0183 m³ kg-1 s-1. Este foi considerado o ajuste ideal, pois minimizou o tempo de processamento, sem alterar as características do produto. O modelo de Crank para geometria plana ajustou-se bem aos dados experimentais obtidos na secagem da casca de mandioca.
Cassava peels from starch industry waste are highly perishable. The drying process is an alternative way to provide a safe storage, free from the development of microorganisms, for the production of flour destined to human consumption. This study aimed at evaluating the kinetics and modeling of the cassava peels drying process, with the aid of a central composite rotational experimental design. Eleven tests were performed with different temperatures (53ºC, 55ºC, 60ºC, 65ºC and 67ºC) and air flow rates (0.0159 m³ kg-1 s-1, 0.0166 m³ kg-1 s-1, 0.0183 m³ kg-1 s-1, 0.0199 m³ kg-1 s-1 and 0.0206 m³ kg-1 s-1). The drying process was carried out in a conventional dryer tray and the drying times, instrumental color parameters (lightness - L*; a* and b* coordinates), titratable acidity and pH of the flour samples obtained after grinding the dehydrated cassava peels from each drying test were evaluated. The temperature increase resulted in a tendency to bleach the material, and a slight variation was observed for titratable acidity and pH in the samples. Temperature and air flow speed affected the drying kinetics, since their increase reduced the time for drying the cassava peels. The minimum drying time (420 min.) was reached when the dryer temperature was set to 67ºC and the air flow to 0.0183 m³ kg-1 s-1. This was considered the ideal setting, because it minimized the processing time, without altering the product features. The Crank model for plane geometry fitted well the experimental data obtained from the cassava peel drying process.