Neste artigo é apresentada uma nova abordagem de um modelo inteligente de otimização sob incerteza para determinar a contratação de energia elétrica no curto prazo (referente aos leilões A-1 e Ajuste) para distribuidoras de energia elétrica. Nesse modelo estão incluídas todas as regras de contratação e repasse à tarifa, definidas pela ANEEL, para as distribuidoras. O processo de otimização utiliza um algoritmo genético, e busca minimizar o custo associado à contratação de energia elétrica, as penalidades por subcontratação e o custo da liquidação (compra/venda) desta energia ao PLD (Preço de Liquidação das Diferenças). A contratação ótima é calculada considerando vários cenários de consumo, obtidos a partir de simulação Monte Carlo, para um período de cinco anos de análise. As decisões de contratação do modelo são tomadas nos dois primeiros anos desse período. A avaliação dos resultados do sistema é feita considerando uma combinação entre o Valor Esperado (VE) da distribuição de custos e o CVaR (Conditional Value at Risk), para os diferentes cenários de consumo. O modelo também usa o PLD_robusto, que busca minimizar a exposição da distribuidora ao PLD. Para ilustrar os resultados do modelo proposto é apresentado um estudo de caso baseado em dados reais. Os resultados obtidos são comparados com alguns resultados de contratação que não consideram o modelo de otimização proposto. Essa comparação é feita para se verificar o quanto o método proposto pode ser melhor que soluções baseadas apenas em análises intuitivas. Além disso, estudos adicionais são apresentados considerando os mecanismos de compensação de sobras e déficits, notadamente MCSD4% e MCSD_Ex-post, previstos na legislação vigente do setor elétrico para minimizar os riscos associados à contratação de energia para as distribuidoras.
In this paper is presented a new approach of an intelligent model for optimization under uncertainty to determine the best strategy of electricity trading in the short term (referring to A-1 and Adjustment auctions) for distribution companies. This model reproduces all the rules of purchase/sale of energy for a distribution company and the transfer of this cost to the final tariff of the consumers. The optimization process uses genetic algorithm, and seeks to minimize the cost associated with the purchase of energy, penalty for subcontracting and the cost of trade (purchase/sale) energy by the spot price. The optimal trading is obtained considering several load scenarios, obtained by Monte Carlo simulation, for a period of five years of analysis. The decisions of trading are taken in the first two years in that period. The evaluation of the model results is done by means of a combination between the expected value of the distribution of costs and the CVaR (Conditional Value at Risk), for the different load scenarios. The model also uses the PLD_robust, which seeks to minimize the exposure of the distribution company in the spot price. To illustrate the results of the proposed model, a study case based on realistic data is presented. The results obtained are compared to the results obtained with the trading of energy without using the optimization model presented in this paper. That comparison is done to verify how much the proposed method can be better than the solutions based on intuitive analysis. In addition, further analysis is performed by considering two mechanisms of compensation of the surpluses and deficits of contracts, named MCSD4% and MCSD_Ex-post, established by ANEEL to reduce the risks associated to the energy trading to the distribution companies.