Abstract:
En
|
Text:
En
|
PDF:
En
ABSTRACT Objective: To evaluate survival and direct medical costs of patients admitted in private hospitals with COVID-19 during the first wave. Methods: A retrospective, observational study analyzing survival and the economic data retrieved on hospitalized patients with COVID-19. Data from March 2020 to December 2020. The direct cost of hospitalization was estimated using the microcosting method with each individual hospitalization. Results: 342 cases were evaluated. Median age of 61.0 (95% CI 57.0-65.0). 194 (56.7%) were men. The mortality rate was higher in the female sex (p = 0.0037), ICU (p < 0.001), mechanical ventilation (p<0.001) and elderly groups. 143 (41.8%) patients were admitted to the ICU (95% CI 36.6%-47.1%), of which 60 (41.9%) required MV (95% CI 34.0%-50.0%). Global LOS presented median of 6.7 days (95% CI 6.0-7.2). Mean costs were US$ 7,060,00 (95% CI 5,300.94-8,819,00) for each patient. Mean cost for patients discharged alive and patients deceased was US$ 5,475.53 (95% CI 3,692.91-7,258.14) and US$ 12,955.19 (95% CI 8,106.61 -17,803.76), respectively (p < 0.001). Conclusions: Patients admitted with COVID-19 in these private hospitals point to great economic impact, mainly in the elderly and high-risk patients. It is key to better understand such costs in order to be prepared to make wise decisions during the current and future global health emergencies. Objective COVID19 COVID 19 COVID-1 wave Methods retrospective COVID19. 19. 202 Results 34 evaluated 610 61 0 61. 95% 95 (95 57.065.0. 570650 57.0 65.0 . 57 65 57.0-65.0) 56.7% 567 56 7 (56.7% men p 0.0037, 00037 0.0037 , 0037 0.0037) 0.001, 0001 0.001 001 0.001) p<0.001 p0001 (p<0.001 groups 14 41.8% 418 41 8 (41.8% 36.6%47.1%, 366471 36.6% 47.1% 36 6 47 1 36.6%-47.1%) 41.9% 419 9 (41.9% 34.0%50.0%. 340500 34.0% 50.0% 50 34.0%-50.0%) 67 6. 6.07.2. 6072 6.0 7.2 2 6.0-7.2) US 706000 060 00 7,060,0 5,300.948,819,00 530094881900 5,300.94 8,819,00 5 300 94 819 5,300.94-8,819,00 patient 547553 475 53 5,475.5 3,692.917,258.14 369291725814 3,692.91 7,258.14 3 692 91 258 3,692.91-7,258.14 1295519 12 955 12,955.1 810661 106 8,106.6 17,803.76, 1780376 17,803.76 17 803 76 -17,803.76) 0.001. Conclusions impact highrisk high risk emergencies COVID1 COVID- 20 (9 065 57.065.0 57065 570 57. 650 65. 57.0-65.0 56.7 (56.7 0003 0.003 003 000 0.00 p<0.00 p000 (p<0.00 41.8 4 (41.8 36.6%47.1% 36647 366 36.6 471 47.1 36.6%-47.1% 41.9 (41.9 34.0%50.0% 34050 340 34.0 500 50.0 34.0%-50.0% 07 6.07.2 607 72 7. 6.0-7.2 70600 06 7,060, 948 5,300.948,819,0 53009488190 530094 5,300.9 881900 8,819,0 30 81 5,300.94-8,819,0 54755 5,475. 917 3,692.917,258.1 36929172581 369291 3,692.9 725814 7,258.1 69 25 3,692.91-7,258.1 129551 12,955. 81066 10 8,106. 178037 17,803.7 80 -17,803.76 ( 57.065. 5706 57.0-65. 56. (56. 0.0 p<0.0 p00 (p<0.0 41. (41. 36.6%47.1 3664 36. 47. 36.6%-47.1 34.0%50.0 3405 34. 50. 34.0%-50.0 6.07. 6.0-7. 7060 7,060 5,300.948,819, 5300948819 53009 5,300. 88190 8,819, 5,300.94-8,819, 5475 5,475 3,692.917,258. 3692917258 36929 3,692. 72581 7,258. 3,692.91-7,258. 12955 12,955 8106 8,106 17803 17,803. -17,803.7 57.065 57.0-65 (56 0. p<0. p0 (p<0. (41 36.6%47. 36.6%-47. 34.0%50. 34.0%-50. 6.07 6.0-7 706 7,06 5,300.948,819 530094881 5300 5,300 8819 8,819 5,300.94-8,819 547 5,47 3,692.917,258 369291725 3692 3,692 7258 7,258 3,692.91-7,258 1295 12,95 810 8,10 1780 17,803 -17,803. 57.06 57.0-6 (5 p<0 (p<0 (4 36.6%47 36.6%-47 34.0%50 34.0%-50 6.0- 70 7,0 5,300.948,81 53009488 530 5,30 881 8,81 5,300.94-8,81 54 5,4 3,692.917,25 36929172 369 3,69 725 7,25 3,692.91-7,25 129 12,9 8,1 178 17,80 -17,803 57.0- p< (p< 36.6%4 36.6%-4 34.0%5 34.0%-5 7, 5,300.948,8 5300948 5,3 88 8,8 5,300.94-8,8 5, 3,692.917,2 3692917 3,6 7,2 3,692.91-7,2 12, 8, 17,8 -17,80 36.6%- 34.0%- 5,300.948, 5,300.94-8, 3,692.917, 3, 3,692.91-7, 17, -17,8 5,300.948 5,300.94-8 3,692.917 3,692.91-7 -17, 5,300.94- 3,692.91- -17 -1 -