Resumo Objetivo: Analisar o efeito do transtorno depressivo maior (TDM) como fator de risco para a ideação suicida em indivíduos com idades entre 11 e 24 anos que frequentam instituições de ensino. Fontes de dados: Revisão sistemática realizada até agosto de 2020 por meio de buscas nas bases United States National Library of Medicine (PubMed) e Biblioteca Virtual em Saúde (BVS), sem limitações quanto à data de publicação. Síntese dos dados: Oito estudos foram selecionados para a metanálise, incluindo 35.443 jovens com idade média de 16,8 anos, predominantemente do sexo feminino (51,2%) e de países asiáticos de renda média (91,6%). Foi encontrado odds ratio (OR) de TDM de 3,89 (intervalo de confiança — IC95% 2,46–6,17) para a ideação suicida em jovens. A análise de subgrupo mostrou efeitos maiores na Ásia (OR=4,71; IC95% 3,22–6,89) do que nas Américas (OR=1,71; IC95% 1,44–2,03). O modelo de metarregressão demonstrou que adolescentes mais jovens (coef=-0,63; IC95% -1,09–-0,18; p<0,01) e estudos mais antigos (coef=-0,23; IC95% -0,039–-0,08; p<0,01) apresentaram maiores efeitos do TDM sobre a ideação suicida. Conclusões: Observou-se relação entre TDM e ideação suicida no continente asiático, entre adolescentes mais jovens e em estudos mais antigos. Objetivo (TDM 1 2 ensino dados 202 PubMed (PubMed BVS, BVS , (BVS) publicação metanálise 35443 35 443 35.44 168 16 8 16, 51,2% 512 51 (51,2% 91,6%. 916 91,6% . 91 6 (91,6%) OR (OR 389 3 89 3,8 intervalo IC95 IC 2,46–6,17 246617 46 17 OR=4,71 OR471 4 71 (OR=4,71 3,22–6,89 322689 22 OR=1,71 OR171 (OR=1,71 1,44–2,03. 144203 1,44–2,03 44 03 1,44–2,03) coef=0,63 coef063 coef coef= 0,63 0 63 (coef=-0,63 1,09–0,18 109018 1,09– 0,18 09 18 -1,09–-0,18 p<0,01 p001 p 01 coef=0,23 coef023 0,23 23 (coef=-0,23 0,039–0,08 0039008 0,039– 0,08 039 08 -0,039–-0,08 Conclusões Observouse Observou se asiático 20 (BVS 3544 35.4 51,2 5 (51,2 91,6 9 (91,6% 38 3, IC9 2,46–6,1 24661 OR=4,7 OR47 7 (OR=4,7 3,22–6,8 32268 OR=1,7 OR17 (OR=1,7 14420 1,44–2,0 coef=0,6 coef06 063 0,6 (coef=-0,6 1,09–0,1 10901 109 1,09 018 0,1 -1,09–-0,1 p<0,0 p00 coef=0,2 coef02 023 0,2 (coef=-0,2 0,039–0,0 003900 0039 0,039 008 0,0 -0,039–-0,0 354 35. 51, (51, 91, (91,6 2,46–6, 2466 OR=4, OR4 (OR=4, 3,22–6, 3226 OR=1, OR1 (OR=1, 1442 1,44–2, coef=0, coef0 06 0, (coef=-0, 1,09–0, 1090 10 1,0 -1,09–-0, p<0, p0 02 0,039–0, 00390 003 0,03 00 -0,039–-0, (51 (91, 2,46–6 246 OR=4 (OR=4 3,22–6 322 OR=1 (OR=1 144 1,44–2 coef=0 (coef=-0 1,09–0 1, -1,09–-0 p<0 0,039–0 -0,039–-0 (5 (91 2,46– OR= (OR= 3,22– 32 14 1,44– (coef=- -1,09–- p< -0,039–- ( (9 2,46 3,22 1,44 (coef= -1,09– -0,039– 2,4 3,2 1,4 (coef -1,09 -0,039 2, -1,0 -0,03 -1, -0,0 -1 -0, - -0
Abstract Objective: This study aimed to analyze the effect of major depressive disorder (MDD) as a risk factor for suicidal ideation in individuals whose ages varied from 11 to 24 years and who were attending educational institutions. Data source: A systematic review was carried out by searching in PubMed and Biblioteca Virtual em Saúde (BVS). Original studies conducted in educational institutions, including individuals whose age varied from 11 to 24 years, in English, Spanish, or Portuguese were included. Data synthesis: Eight studies were selected for the meta-analysis, including 35,443 youths, with an average age of 16.8 years, predominantly female (51.2%), and from middle-income Asian countries (91.6%). An odds ratio of MDD of 3.89 (95%CI 2.46–6.17) for suicide ideation in youth was found. Subgroup analysis showed higher effects in Asia (OR=4.71; 95%CI 3.22–6.89) than Americas (OR=1.71; 95%CI 1.44–2.03). The meta-regression model indicated that younger adolescents (coef=-0.63; 95%CI 1.09–-0.18; p<0.01) and older studies (coef=-0.23; 95%CI 0.039–-0.08; p<0.01) presented higher effects of MDD on suicidal ideation. Conclusions: Early detection and treatment of MDD in youth patients are of utmost importance for preventing suicidal ideation. Educational institutions could play an important role in the early detection and intervention. Objective (MDD 1 2 source BVS. BVS . (BVS) English Spanish included synthesis metaanalysis, metaanalysis meta analysis, meta-analysis 35443 35 443 35,44 youths 168 16 8 16. 51.2%, 512 51.2% , 51 (51.2%) middleincome middle income 91.6%. 916 91.6% 91 6 (91.6%) 389 3 89 3.8 95CI CI 95 2.46–6.17 246617 46 17 found OR=4.71 OR471 OR 4 71 (OR=4.71 3.22–6.89 322689 22 OR=1.71 OR171 (OR=1.71 1.44–2.03. 144203 1.44–2.03 44 03 1.44–2.03) metaregression regression coef=0.63 coef063 coef coef= 0.63 0 63 (coef=-0.63 1.09–0.18 109018 1.09– 0.18 09 18 1.09–-0.18 p<0.01 p001 p 01 coef=0.23 coef023 0.23 23 (coef=-0.23 0.039–0.08 0039008 0.039– 0.08 039 08 0.039–-0.08 Conclusions intervention (BVS 3544 35,4 51.2 5 (51.2% 91.6 9 (91.6% 38 3. 2.46–6.1 24661 OR=4.7 OR47 7 (OR=4.7 3.22–6.8 32268 OR=1.7 OR17 (OR=1.7 14420 1.44–2.0 coef=0.6 coef06 063 0.6 (coef=-0.6 1.09–0.1 10901 109 1.09 018 0.1 1.09–-0.1 p<0.0 p00 coef=0.2 coef02 023 0.2 (coef=-0.2 0.039–0.0 003900 0039 0.039 008 0.0 0.039–-0.0 354 35, 51. (51.2 91. (91.6 2.46–6. 2466 OR=4. OR4 (OR=4. 3.22–6. 3226 OR=1. OR1 (OR=1. 1442 1.44–2. coef=0. coef0 06 0. (coef=-0. 1.09–0. 1090 10 1.0 1.09–-0. p<0. p0 02 0.039–0. 00390 003 0.03 00 0.039–-0. (51. (91. 2.46–6 246 OR=4 (OR=4 3.22–6 322 OR=1 (OR=1 144 1.44–2 coef=0 (coef=-0 1.09–0 1. 1.09–-0 p<0 0.039–0 0.039–-0 (51 (91 2.46– OR= (OR= 3.22– 32 14 1.44– (coef=- 1.09–- p< 0.039–- (5 (9 2.46 (OR 3.22 1.44 (coef= ( 2.4 3.2 1.4 (coef 2.