We review Hennigian phylogenetics and compare it with Maximum parsimony, Maximum likelihood, and Bayesian likelihood approaches. All methods use the principle of parsimony in some form. Hennigian-based approaches are justified ontologically by the Darwinian concepts of phylogenetic conservatism and cohesion of homologies, embodied in Hennig's Auxiliary Principle, and applied by outgroup comparisons. Parsimony is used as an epistemological tool, applied a posteriori to choose the most robust hypothesis when there are conflicting data. Quantitative methods use parsimony as an ontological criterion: Maximum parsimony analysis uses unweighted parsimony, Maximum likelihood weight all characters equally that explain the data, and Bayesian likelihood relying on weighting each character partition that explains the data. Different results most often stem from insufficient data, in which case each quantitative method treats ambiguities differently. All quantitative methods produce networks. The networks can be converted into trees by rooting them. If the rooting is done in accordance with Hennig's Auxiliary Principle, using outgroup comparisons, the resulting tree can then be interpreted as a phylogenetic hypothesis. As the size of the data set increases, likelihood methods select models that allow an increasingly greater number of a priori possibilities, converging on the Hennigian perspective that nothing is prohibited a priori. Thus, all methods produce similar results, regardless of data type, especially when their networks are rooted using outgroups. Appeals to Popperian philosophy cannot justify any kind of phylogenetic analysis, because they argue from effect to cause rather than from cause to effect. Nor can particular methods be justified on the basis of statistical consistency, because all may be consistent or inconsistent depending on the data. If analyses using different types of data and/or different methods of phylogeny reconstruction do not produce the same results, more data are needed.
Se revisa la sistemática filogenética Hennigiana y se compara con las aproximaciones de Máxima Parsimonia, Máxima Verosimilitud y verosimilitud Bayesiana. Todos los métodos utilizan el principio de la parsimonia en alguna forma. Las aproximaciones con bases Hennigianas se justifican ontológicamente con los conceptos Darwinianos de conservacionismo filogenético y cohesión de las homologías, representados en el Principio Auxiliar de Hennig, y aplicado en la comparación con el grupo externo. La Parsimonia se utiliza como una herramienta epistemológica, aplicada a posteriori en la elección de la hipótesis más robusta cuando hay datos en conflicto. Los métodos cuantitativos utilizan la parsimonia como un criterio ontológico: los análisis de Máxima Parismonia utilizan la parsimonia sin pesaje, la Máxima Verosimilitud les asigna un peso igual a todos los caracteres que explican los datos, mientras que la verosimilitud Bayesiana depende del pesaje de cada una de las particiones de caracteres que explican los datos. Las diferencias en los resultados derivan de un muestreo insuficiente de datos, en cuyo caso cada método trata las ambigüedades de manera diferente. Todos los métodos cuantitativos producen redes. Las redes pueden convertirse en árboles al ser enraizadas. Si el enraizamiento se efectua de acuerdo con el Principio Auxiliar de Hennig, utilizando la comparación con un grupo externo, el árbol resultante puede considerarse como una hipótesis filogenética. Al incrementarse el número de datos, los métodos de verosimilitud selccionan modelos que permiten un número cada vez mayor de posibilidades a priori, convergiendo en la perspectiva Hennigiana de que nada está prohibido a priori. Por lo tanto, todos los métodos producen resultados similares independientemente del tipo de datos, especialmente cuando las redes se enraizan utilizando grupos externos. Las invocaciones a la filosofia Popperiana no pueden justificar ningún tipo de análisis filogenético, ya que sus argumentos van del efecto a la causa y no de la causa al efecto. Tampoco se puede justificar el uso de un método en particular con base en la consistencia estadística, ya que todos pueden ser consistentes o incosistentes dependiendo de los datos. Si los análisis con diferentes tipos de datos y/o métodos de reconstrucción filogenética no producen igual resultado, significa que es necesario reunir datos adicionales.