O presente estudo teve como objetivo desenvolver modelos matemáticos para a quantificação do teor de matéria orgânica, a partir da cor do solo, obtida por aparelho colorímetro no sistema Munsell de cores. Para esse fim, 912 amostras de solo foram coletadas na região de Porto Grande (Amapá) e enviadas para análises química, granulométrica e determinação da cor em amostras secas e úmidas. Os componentes valor e croma da cor do solo no sistema Munsell, obtidos por colorímetro, foram utilizados para quantificar através de regressão múltipla passo a passo (stepwise) o teor de matéria orgânica do solo. O modelo de predição com base em todas as amostras apresentou R² de 0,66 para amostras úmidas e 0,56 para amostras secas, ao serem validados utilizando amostras independentes. Foi possível ainda melhorar os modelos quando as amostras foram separadas por classe de solo ou textura, e os modelos gerados com base em cores de amostras úmidas foram sistematicamente superiores àqueles utilizando amostras secas. Em relação às classes de solo, os melhores resultados foram obtidos para Argissolos e Latossolos, ambos gerando um R² de validação independente de 0,73 (amostra úmida). Para textura, os melhores resultados foram obtidos para solos de textura muito argilosa, com R² de validação de 0,81 (amostra úmida). Os modelos de predição de matéria orgânica em função da cor do solo possuem simplicidade e potencial para serem utilizados no laboratório e no campo, especialmente para Argissolos e Latossolos de textura argilosa, de maneira automática e sem necessidade de uso de produtos ou reagentes.
This study aimed to derive mathematical models to predict the soil organic matter content based on soil color obtained by a colorimeter in the Munsell color system. A total of 907 soil samples were collected in the region of Porto Grande (Amapá, Brazil) and analyzed in the laboratory for chemical properties, particle size distribution and color of dry and wet samples. The Munsell color components value and croma obtained using a colorimeter were used to predict soil organic matter content based on stepwise multiple linear regression. Models derived using all samples had R² of 0.66 for wet samples and 0.56 for dry samples, respectively, when validated using independent samples. It was possible to improve the models by separating the samples by soil class or texture. The models derived using colors obtained from wet samples were systematically better than those based on dry samples. Among soil classes, best results were obtained for Argissolos (Ultisols) and Latossolos (Oxisols), both having an R² of independent validation of 0.73 (wet sample). For texture, best results were obtained for very clayey soils, with an R² of validation of 0.81 (wet sample). The soil organic matter prediction models based on soil color have simplicity and potential to be used in the laboratory and in the field with quick and unnecessary chemical products, especially for Ultisols and Oxisols of clayey texture.