A absorção de nutrientes pelas plantas é um processo ativo, requerendo energia para o acúmulo de nutrientes essenciais em níveis mais elevados nos tecidos vegetais do que na solução do solo, enquanto que a presença de metais tóxicos ou excesso de nutrientes requererem mecanismos para modular o acúmulo de íons. Genes que codificam transportadores de íons, isolados de plantas e de leveduras, foram usados para identificar homólogos presumíveis no banco de dados de seqüências expressas de cana-de-açúcar (SUCEST). Cinco consensos de grupos de seqüências com homologia a genes de transportadores de fosfato de alta afinidade foram identificados. O consenso de um dos grupos permitiu a predição da proteína completa, com 541 amino ácidos e 81% de identidade com o gene NtPT1 de Nicotiana tabacum, consistindo de 12 domínios transmembrana divididos por uma grande região hidrofílica. Homólogos presumíveis a genes transportadores de micronutrientes de Arabidopsis thaliana também foram detectados em algumas bibliotecas do SUCEST. A absorção de ferro em gramíneas envolve a liberação de um composto fito-sideróforo, ácido mugenêico (MA), que complexa com Fe3+, sendo então absorvido por um transportador específico. Seqüências expressas (EST, expressed sequence tag) de cana-de-açúcar homólogas aos genes que codificam as três enzimas da via de biossíntese do ácido mugenêico (nicotianamina sintase; nicotianamina transferase; e a sintetase presumível do ácido mugenêico ids3), além de um transportador presumível de Fe3+-fito-sideróforo foram também detectados. Sete grupos de seqüências de cana-de-açúcar foram identificados com grande homologia com os membros da família de genes ZIP (ZIP1, ZIP3, ZIP4, IRT1 e ZNT1), enquanto que quatro grupos apresentaram homologia com ZIP2 e três com ZAT. Seqüências homólogas aos membros de uma outra família de genes, Nramp, que codificam transportadores de metais de ampla espectro, foram também detectados com expressão constitutiva. Transcritos parciais homólogos aos genes que codificam g-glutamilcisteína sintetase, glutationa sintetase e fitoquelatina sintase (responsáveis pela biossíntese da proteína quelante de metais, fitoquelatina) e todos os quatro tipos do outro principal peptídeo quelante de metais em plantas, metalotioneína (MT), foram identificados: MT do tipo I sendo a mais abundante (> 1% das seqüências na biblioteca de sementes), seguido pela MT do tipo II, com padrão de expressão similar àquele descrito para MT de Arabidopsis. A identificação e a compreensão da expressão de genes associados com a absorção de nutrientes e tolerância a metais poderiam possibilitar o desenvolvimento de variedades de cana-de-açúcar mais eficientes nutricionalmente, ou permitiriam o uso da cana-de-açúcar como planta hiper-acumuladora para a restauração de área contaminadas em programas de fitorremediação.
Plant nutrient uptake is an active process, requiring energy to accumulate essential elements at higher levels in plant tissues than in the soil solution, while the presence of toxic metals or excess of nutrients requires mechanisms to modulate the accumulation of ions. Genes encoding ion transporters isolated from plants and yeast were used to identify sugarcane putative homologues in the sugarcane expressed sequence tag (SUCEST) database. Five cluster consensi with sequence homology to plant high-affinity phosphate transporter genes were identified. One cluster consensus allowed the prediction of a full-length protein containing 541 amino acids, with 81% amino acid identity to the Nicotiana tabacum NtPT1 gene, consisting of 12 membrane-spanning domains divided by a large hydrophilic charged region. Putative homologues to Arabidopsis thaliana micronutrient transporter genes were also detected in some of the SUCEST libraries. Iron uptake in grasses involves the release of the phytosiderophore mugeneic acid (MA) which chelate Fe3+ which is then absorbed by a specific transporter. Sugarcane expressed sequence tag (EST) homologous to genes coding for three enzymes of the mugeneic acid biosynthetic pathway [nicotianamine synthase; nicotianamine transferase; and putative mugeneic acid synthetase (ids3)] and a putative Fe3+-phytosiderophore transporter were detected. Seven sugarcane sequence clusters were identified with strong homology to members of the ZIP gene family (ZIP1, ZIP3, ZIP4, IRT1 and ZNT1), while four clusters homologous to ZIP2 and three to ZAT were found. Homologues to members of another gene family, Nramp, which code for broad-specificity transition metal transporters were also detected with constitutive expression. Partial transcripts homologous to genes encoding gamma-glutamylcysteine synthetase, glutathione synthetase, and phytochelatin synthase (responsible for biosynthesis of the metal chelator phytochelatin) and all four types of the major plant metal-chelator peptide metallothionein (MT) were identified: Type I MT being the most abundant (>1% of seed-library reads), followed by Type II which had a similar pattern of expression as that described for Arabidopsis MT. Identifying and understanding the expression of genes associated with nutrient uptake and metal tolerance could lead to the development of more nutrient-efficient sugarcane cultivars, or might allow the use of sugarcane as a hyper-accumulator plant for the restoration of contaminated areas in phytoremediation programs.