Resumo: A análise de capacidade busca estimar a probabilidade de um processo produzir produtos em conformidade. Os índices de capacidade são parâmetros adimensionais que medem o quanto o processo consegue atender às especificações. Na literatura são listados, além de outros, oito índices da capacidade, considerando um processo estável sob controle estatístico e baseado na distribuição normal de probabilidades, definidos por: Cp, Pp, Cpk, Ppk, Cpm, Ppm, Cpmk, e Ppmk. Basicamente, as fórmulas dos índices se diferenciam nos cálculos da variabilidade dentro e total, e dos deslocamentos da média em relação ao valor nominal e ao limite de especificação mais próximo. O objetivo deste artigo foi comparar estes índices de capacidade, e para isso, buscou-se escolher o estimador mais consistente, ou seja, que melhora a acurácia e a eficiência à medida que se aumenta o número de observações. Desse modo, foi realizada uma simulação de 30.000 valores de uma variável aleatória normal com média igual a zero e desvio-padrão igual a um. Isso possibilitou amostrar este processo em 1.000 vezes utilizando-se, para isso, 5, 10, 15, 20, 25 e 30 subgrupos racionais com observações individuais ou elementos amostrais. Posteriormente, foram provocados 20 deslocamentos da média, com valores de 0,1 a 2 e variando 0,1 unidade. De acordo com os resultados, concluiu-se que os índices Cpk e Ppk foram os mais consistentes, por apresentarem maiores acurácias e eficiências para pelo menos 15 subgrupos racionais ou elementos amostrais, independentemente da magnitude do deslocamento da média em relação ao valor nominal. Resumo conformidade especificações listados outros probabilidades Cp Pp Cpm Ppm Cpmk Ppmk Basicamente total próximo isso buscouse buscou consistente seja modo 30000 000 30.00 desviopadrão desvio padrão 1000 1 1.00 utilizandose, utilizandose utilizando se, utilizando-se 5 10 3 amostrais Posteriormente 01 0 0, unidade resultados concluiuse concluiu consistentes 3000 00 30.0 100 1.0 300 30. 1.
Abstract: Capability analysis seeks to estimate the probability that a process will produce compliant products. The capability indices are dimensionless parameters that measure how well the process can meet specifications. In the literature, eight capability indices are listed, among others, considering a stable process under statistical control and based on the normal probability distribution, defined by: Cp, Pp, Cpk, Ppk, Cpm, Ppm, Cpmk, and Ppmk. Basically, the index formulas differ in the calculations of the variability within and total, and of the shifts of the mean in relation to the nominal value and the nearest specification limit. The objective of this article was to compare these capacity indexes, and for that, it was chosen the most consistent estimator, that is, the one that improved the accuracy and efficiency as the number of observations increased. Thus, a simulation of 30,000 values of a normal random variable with a mean equal to zero and a standard deviation equal to one was performed. This made it possible to sample this process 1,000 times using 5, 10, 15, 20, 25, and 30 rational subgroups with individual observations or sample elements. Subsequently, 20 mean shifts were provoked, with values ranging from 0.1 to 2 and varying by 0.1 unit. According to the results, it was concluded that the indexes Cpk and Ppk were the most consistent in presenting higher accuracy and efficiency for at least 15 rational subgroups or sample elements, regardless of the magnitude of the mean displacement in relation to the nominal value. Abstract products specifications literature listed others distribution Cp Pp Cpm Ppm Cpmk Ppmk Basically total limit estimator is increased Thus 30000 000 30,00 performed 1000 1 1,00 5 10 25 3 elements Subsequently provoked 01 0 0. unit results 3000 00 30,0 100 1,0 300 30, 1,