Abstract:
En
|
Text:
En
|
PDF:
En
This research investigates the effects of accelerated spheroidizing of cementite on the mechanical properties and microstructural characteristics of commercial steel grades (Fe-0.2C, Fe-0.5C, Fe-0.7C wt%), emphasizing the role of cold-rolling reduction followed by stress relief annealing. Utilizing SEM imaging, X-ray diffraction, and EBSD measurements, this study comprehensively examines how variations in carbon content influence hardness, dislocation density, and crystallographic texture orientation. Microhardness measurements reveal a direct relationship with carbon content, yielding values of 28.0±1.0 HRC for DT-1020, 36.0±1.0 HRC for DT-1050, and 39.0±1.0 HRC for DT-1070. Texture analysis through EBSD demonstrates distinct patterns among the grades: DT-1020 displays a dominant (111) texture, DT-1050 exhibits a (101) orientation, and DT-1070 features a more refined (101) texture. Dislocation density analysis further corroborates the impact of carbon content, with DT-1050 presenting the highest density at approximately 7.8×1016 m-2. This detailed exploration elucidates the intricate interplay between carbon content, cementite morphology, and their collective influence on mechanical performance of steel, providing valuable guidance for tailoring steel properties via microstructural control. Fe0.2C, Fe02C FeC Fe 0.2C, 0 2C C (Fe-0.2C Fe0.5C, Fe05C 0.5C, 5C Fe-0.5C Fe0.7C Fe07C 0.7C 7C wt%, wt wt% , wt%) coldrolling cold rolling annealing imaging Xray X ray diffraction hardness orientation 28010 28 1 28.0±1. DT1020, DT1020 DT 1020, 1020 36010 36 36.0±1. DT1050, DT1050 1050, 1050 39010 39 39.0±1. DT1070. DT1070 1070. 1070 DT-102 111 (111 DT-105 101 (101 DT-107 781016 7 8 1016 7.8×101 m2. m2 m 2. 2 m-2 morphology control Fe0 Fe0.2C 02C 0.2C Fe0.5C 05C 0.5C 07C 2801 28.0±1 DT102 102 3601 3 36.0±1 DT105 105 3901 39.0±1 DT107 107 DT-10 11 (11 10 (10 78101 7.8×10 m- 280 28.0± DT10 360 36.0± 390 39.0± DT-1 (1 7810 7.8×1 28.0 DT1 36.0 39.0 DT- ( 781 7.8× 28. 36. 39. 78 7.8 7.