Abstract In view of the growing scarcity of water for agriculture, the increase in food demand and future drought scenarios posed by climate change, it is essential to design new technologies that contribute to lower water consumption. In this research, high-resolution images have been used to estimate evapotranspiration in rice fields by applying the METRICTM (Mapping Evapotranspiration at High Resolution using Internalized Calibration) energy balance model. For this purpose, 5900 m2 of crop were monitored under continuous flood irrigation (CF) and 2600 m2 under alternate wetting and drying irrigation (AWD), in addition to some plots with lateral filtration. Ten flights were conducted between tillering and flowering phases, five flights with a Matrice 210 UAV equipped with a Parrot Sequoia multispectral camera, and five flights with a Matrice 300 RTK equipped with a H20T thermal camera. Field data were collected from vegetation indices (NDVI and LAI), and readings from a radiometer, to adjust information from multispectral and thermal images, respectively, and to obtain the components of the surface energy balance. Mean values for crop evapotranspiration (ETc) of 6.34 ± 1.49 and 5.84 ± 0.41 mm d-1 were obtained for IC irrigation and AWD irrigation, respectively, obtaining a water saving of 42% with a yield reduction of 14%, providing a guide for proper irrigation management, however, it is suggested to use the model to optimize yield by obtaining critical thresholds for optimal application of AWD in the face of water resource scarcity.
Resumen Ante la creciente escasez del agua para la agricultura, el incremento de la demanda de alimentos y los futuros escenarios de sequía que nos plantea el cambio climático es indispensable diseñar nuevas tecnologías que contribuyan a un menor consumo de agua. En esta investigación se han empleado imágenes de alta resolución para estimar la evapotranspiración en arrozales aplicando el modelo de balance de energía METRICTM (Mapping Evapotranspiration at High Resolution using Internalized Calibration). Para ello, se monitorizaron 5900 m2 de cultivo bajo riego por inundación continua (IC) y 2600 m2 bajo la técnica de riego de alternancia humedecimiento y secado (AWD, por sus siglas en inglés), además de algunas parcelas con filtración lateral. Se realizaron 10 vuelos entre las etapas de macollamiento y floración, cinco vuelos con un VANT Matrice 210 con una cámara multiespectral Parrot Sequoia, y cinco vuelos con un Matrice 300 RTK equipado con una cámara térmica H20T. Se colectó información de campo de los índices de vegetación (NDVI e IAF), y lecturas de un radiómetro, para ajustar información de las imágenes multiespectrales y térmicas, respectivamente; y obtener los componentes del balance de energía en superficie. Se obtuvo valores medios para evapotranspiración del cultivo (ETc) de 6,34 ±1,49 y 5,84 ± 0,41 mm d-1 para riego IC y riego AWD, respectivamente, obteniéndose un ahorro de agua del 42% con una reducción del rendimiento en 14%, proporcionando una guía para la gestión adecuada del riego, sin embargo, se sugiere utilizar el modelo para optimizar el rendimiento obteniendo umbrales críticos para la aplicación óptima de AWD frente a la escasez del recurso hídrico.