ABSTRACT Perhaps one of the most important goals of sustainable development for developing countries is to enhance the utilization of renewable energy sources in all sectors in general and the agricultural sector in particular. The pre-cooling process helps to maintain quality and extend the shelf life of the fruits and vegetables. The aim of this study was to fabricate an indirect evaporative solar precooler (IESP) to reduce post-harvest loss for agricultural products. Tomato crop was chosen to be pre-cooled as an example of agricultural value chains. Experimental variables included three temperatures of cooling water (15, 10 and 5 °C) and two air velocities that passed through the cooling cabinet (1.5 and 2.5 m s-1). The results showed that at 1.5 m s-1 air velocity, the actual coefficient of performance was 19.4, 25.5 and 34.7% at cooling water temperatures 15, 10 and 5 °C, respectively. At 2.5 m s-1 air velocity, the actual coefficient of performance was 23.1, 28.8 and 37.2% at cooling water temperatures 15, 10 and 5 oC, respectively. The performance of the IESP under these conditions was 15.4 oC, 91.5% RH, 0.338 TR refrigeration load and 37.2% COPcyc. Total energy consumption was 6.4 kWh day-1. The solar pre-cooler performance proved a very feasible solution to the demands of small and medium horticultural holdings, especially in cities with a very hot climate to keep vegetables and fruits from deteriorating after harvest.
RESUMEN Quizás uno de los objetivos más importantes del desarrollo sostenible para los países en desarrollo es mejorar la utilización de fuentes de energía renovables en todos los sectores en general y en el sector agrícola en particular. El proceso de pre-enfriamiento ayuda a mantener la calidad y prolongar la vida útil de las frutas y verduras. Este estudio tuvo como objetivo fabricar un preenfriador solar evaporativo indirecto (IESP) para reducir las pérdidas posteriores a la cosecha de productos agrícolas. El cultivo de tomate fue elegido para ser preenfriado como ejemplo de cadenas de valor agrícolas. Las variables experimentales incluyeron tres temperaturas del agua de enfriamiento (15, 10 y 5 °C) y dos velocidades del aire que pasó por el gabinete de enfriamiento (1,5 y 2,5 m s-1). Los resultados mostraron que a una velocidad del aire de 1,5 m s-1, el coeficiente de rendimiento real fue de 19,4, 25,5 y 34,7% a temperaturas del agua de refrigeración de 15, 10 y 5 oC, respectivamente. A una velocidad del aire de 2,5 m s-1, el coeficiente de rendimiento real fue de 23,1, 28,8 y 37,2% a temperaturas del agua de refrigeración de 15, 10 y 5 oC, respectivamente. El desempeño del IESP bajo estas condiciones fue de 15,4 oC, 91,5% HR, 0,338 TR carga frigorífica y 37,2% COPcyc. El consumo total de energía fue de 6,4 kWh día-1. El rendimiento del preenfriador solar resultó ser una solución muy viable para las demandas de las pequeñas y medianas explotaciones hortícolas, especialmente en ciudades con un clima muy cálido, para evitar que las verduras y frutas se deterioren después de la cosecha.