Iron in sediments can be part of a wide variety of minerals which characteristics are heavily dependent upon the environmental conditions. Hence, their knowledge is useful for paleoenvironmental interpretations. The aim of this work is to contribute to the understanding of iron-bearing minerals in clay deposits associated whit the Holocene hypsthermal sea-level fall, in the coastal plain of the Río de la Plata estuary, at Ensenada, Berisso and La Plata localities (Figs. 1, 2a). The studied unit corresponds to the Villa Elisa Facies of the Las Escobas Formation (Cavallotto, 1995 , Fig. 2b). The aforementioned author indicated that the analyzed deposits reflected sedimentation in a marine-continental transition linked to a saltmarsh environment, developed when the Holocene sea flooded the coastal plain. Cavallotto (1995) also indicated that this low-energy environment would have received suspended material from different origins (such as creeks and tidal currents), which flocculated as result of a high salinity. An important aspect to emphasize is that these deposits comprise the parent materials of the soils of the region that has been classified as Vertisols (see Imbellone and Mormeneo, 2011). The present study includes the use of several techniques of proven effectiveness for mineralogical characterization, especially related to iron-bearing minerals in order to contribute to the paleoenvironmental interpretation of this unit. In addition, the results allow performing inferences that may interest to Soil and Environmental Sciences. Sampling was performed in eight excavations (Figs. 2a, 3) where eleven samples were obtained at depths ranging from 20 to 110 cm. The most affected levels by the current pedogenetic cycle (A horizons) were not taken into account. Routine analyses such as color, grain size, organic matter and swelling were performed (Table 1), in addition to chemical analysis (Table 2), Mössbauer spectroscopy (Fig. 4; Table 3), magnetic properties (Figs. 6, 7; Table 4,), X-ray diffraction (Fig. 8; Table 5) and differential thermal-thermogravimetric analysis (Fig. 9). The analyzed samples are gray-olive in color (commonly known in Soil Science as gley colors) and show a clear predominance of clay fraction. From a textural point of view, the materials are classified as clays (Fig. 4). Samples are composed of a mineralogical complex association, although considering the wide area of sampling, the composition (e.g., texture, magnetic parameters, chemical elements) are similar in all samples. This association results from the combination of multiple factors, including processes related to the source area, the depositional environment at a saltmarsh, and also the current pedogenetic environment. The clay minerals (approximately 60% of total) are dominant over the other mineral phases, represented mainly by smectites and illite, and secondarily by kaolinite and interstratified I/S (Table 5; Fig. 8). Also quartz, plagioclase, alkaline feldspar, and to a lesser extent calcite and iron oxy-hydroxides (goethite and probably ferrihydrite), are present. The presence of goethite is consistent with the magnetic and differential thermal-thermogravimetric results (Table 4; Figs. 6, 9), which also evidenced a low concentration of this mineral (less than 3%). Samples have shown a considerable total iron content (about 10%; Table 2) and according to the Mössbauer spectroscopy the ferric iron (Fe3+) predominates over the ferrous (Fe2+), being the relative percent of Fe3+ phase approximately 92% and Fe2+ phase only around 8% (Table 3; Fig. 5). In view of these results the iron oxy-hydroxides do not constitute a dominant mineral phase, and therefore do not represent the main iron-bearing minerals. On the basis of the obtained results, it is concluded that Fe3+ is mainly within the clay minerals structure, in particular in iron-rich smectites, of the nontronite/Fe-beidellite type. The mineral association presented here has important implications for paleoenvironmental interpretations. Taking into account the previous models that considered the Villa Elisa saltmarshes Facies of Las Escobas Formation, we concluded that this environment received clay minerals, coming from the erosion of loessic soils (mainly smectites and illite) in addition to a tidal input (more rich in smectites and kaolinite). Once deposited, those materials were subjected to the environmental conditions, including repeated wetting-drying cycles and their respective Eh fluctuations under slightly alkaline pH conditions. Such conditions gave rise to complex mechanisms, which allowed the incorporation of iron into the smectites structure. One interesting aspect to emphasize is that the gley colors of these materials were originated by Fe3+ bearing minerals as Fe-smectites, which contradicts the traditional assignation of this color pattern to Fe2+ iron minerals. Besides, it is highlighted that the participation of Fe-smectites in association with iron oxy-hydroxides, contributes to the adsorption of heavy metals and other contaminants of the region. This aspect gives to the Villa Elisa Facies a great environmental importance.
En este trabajo se efectúa la caracterización de los minerales portadores de hierro en arcillas de la llanura costera del estuario del Río de la Plata, incluidas en la Facies Villa Elisa de la Formación Las Escobas (MIS1), con el principal objetivo de contribuir a su interpretación paleoambiental. Además, los resultados permiten hacer inferencias que se estiman de interés para la Pedología y para las Ciencias Ambientales. El trabajo abarca el uso de diversas técnicas (análisis químicos, determinación de propiedades magnéticas, análisis térmico diferencialtermogravimétrico, difractometría de rayos X y espectroscopia Mössbauer). Los materiales analizados presentan tonalidades gris-oliva y se clasifican como arcillas. Presentan una asociación mineralógica compleja, resultado de la combinación de múltiples factores, que incluyen procesos vinculados a su procedencia, al ambiente de depositación y a los efectos de la pedogénesis. Dominan los argilominerales (aproximadamente 60%), representados principalmente por esmectitas, illita y secundariamente por caolinita e interestratificados illita/esmectita con elevado contenido de capas expansivas. Se identificó también la presencia de cuarzo, plagioclasas, feldespatos alcalinos y en menor medida calcita y óxi-hidróxidos de hierro. El contenido de hierro total es considerable (alrededor del 10%), con un claro predominio de Fe3+ sobre el Fe2+ (92% y 8%, respectivamente). Los óxi-hidróxidos de hierro presentes (goethita y eventualmente ferrihidrita) no constituyen los principales portadores de hierro. De esta manera se concluye que el Fe3+ se encuentra principalmente en los argilominerales, en particular en esmectitas ricas en hierro (Fe-esmectitas), del tipo nontronita/Fe-beidellita. La asociación mineral determinada tiene importantes implicancias para la interpretación paleoambiental. Se concluye que un ambiente de marisma recibió argilominerales a partir de la erosión de suelos loéssicos (principalmente esmectitas e illita) y por corrientes mareales (más ricos en esmectitas y caolinita). Mecanismos propios del ambiente depositacional, vinculados a ciclos de humedecimiento-secado con oscilaciones de Eh en un medio levemente alcalino permitieron la incorporación de hierro en la estructura de las esmectitas. Un aspecto a destacar es que estos materiales presentan colores glei originados por minerales con Fe3+ (Fe-esmectitas y goethita), lo cual contradice el tradicional supuesto en Pedología, que asocia este patrón de color a minerales de Fe2+. Finalmente, se destaca que la elevada participación de Fe-esmectitas en asociación con óxi-hidróxidos de hierro, contribuye a la adsorción de metales pesados y otros contaminantes de la región, dándole a la Facies Villa Elisa un importante valor ambiental.