Resumo O objetivo deste trabalho foi predizer os indicadores de produção e determinar o seu potencial impacto econômico em um sistema de integração utilizando as redes neurais artificiais (RNA). Quarenta parâmetros zootécnicos e de produção de granjas de matrizes e de frango de corte, um incubatório e um abatedouro foram selecionados como variáveis. Os modelos de RNA foram estabelecidos para quatro variáveis de saída (“eclosão vendável”, “peso ao final da quinta semana”, “condenações parciais” e “condenações totais”) e foram analisados em relação ao coeficiente de determinação múltipla (R2), coeficiente de correlação (R), erro médio (E), erro quadrático médio (EQM) e raiz do erro quadrático médio (REQM). Os cenários produtivos foram simulados e os impactos foram estimados. Os modelos de RNA gerados foram adequados para simular diferentes cenários produtivos após o treinamento. Para “eclosão vendável”, o modelo de incubadora e o período de incubação aumentaram os ganhos financeiros. Para “peso ao final da quinta semana”, a linhagem também demonstrou influencia no retorno financeiro, o que não aconteceu com o peso ao final da primeira semana. O sexo do lote possui influência nas taxas de “condenação parcial”, ao contrário do peso do frango no primeiro dia. As taxas de mortalidade e o peso do frango apresentaram influência na “condenação total”, mas o sexo do lote e o tipo de pinto não tiverem influência. RNA. . (RNA) corte eclosão vendável, vendável , vendável” semana, semana semana” condenações parciais totais totais” R2, R2 R (R2) R, (R) E, E (E) EQM (EQM REQM. REQM (REQM) estimados treinamento financeiros financeiro condenação parcial, parcial parcial” dia total, total total” (RNA (R2 (R (E (REQM
Abstract The aim of this study was to predict production indicators and to determine their potential economic impact on a poultry integration system using artificial neural networks (ANN) models. Forty zootechnical and production parameters from broiler breeder farms, one hatchery, broiler production flocks, and one slaughterhouse were selected as variables. The ANN models were established for four output variables: “saleable hatching”, “weight at the end of week 5,” “partial condemnation,” and “total condemnation” and were analyzed in relation to the coefficient of multiple determination (R2), correlation coefficient (R), mean error (E), mean squared error (MSE), and root mean square error (RMSE). The production scenarios were simulated and the economic impacts were estimated. The ANN models were suitable for simulating production scenarios after validation. For “saleable hatching”, incubator and egg storage period are likely to increase the financial gains. For “weight at the end of the week 5” the lineage (A) is important to increase revenues. However, broiler weight at the end of the first week may not have a significant influence. Flock sex (female) may influence the “partial condemnation” rates, while chick weight at first day may not. For “total condemnation”, flock sex and type of chick may not influence condemnation rates, but mortality rates and broiler weight may have a significant impact. (ANN farms hatchery flocks variables saleable hatching, hatching , hatching” 5, 5 partial condemnation, total R2, R2 R (R2) R, (R) E, E (E) MSE, MSE (MSE) RMSE. RMSE . (RMSE) estimated validation gains A (A revenues However female (female (R2 (R (E (MSE (RMSE