RESUMO A produção de biodiesel tem crescido e ganhado destaque no cenário energético mundial. Com isso, seu principal coproduto, o glicerol bruto (GB), tem acompanhado esse aumento, ocasionando a formação de grandes estoques deste resíduo. Uma alternativa promissora para a sua redução consiste na utilização por processos biológicos anaeróbios visando à produção de biogás, tanto hidrogênio (H2) quanto metano (CH4). Sabe-se que a eficiência dessa bioconversão aumenta por meio da codigestão com outros resíduos orgânicos. Assim, o objetivo deste estudo consistiu na codigestão do GB, proveniente da produção de biodiesel a partir de óleos residuais domésticos, com vinhaça citrícola (VC), em dois estágios sequenciais. No 1º estágio (Ensaio 1), o reator anaeróbio foi operado em batelada, alimentado com 5 g DQO L-1 GB e 5 g DQO L-1 VC, na presença de cultura mista pertencente ao gênero Clostridium sp., a 37 °C, pH 5,5, headspace com N2, gerando 4,48 mmol H2 L-1 em 112 h de experimento, sendo consumidos 93,19 % de GB e 74,00 % de glicose. Um ensaio controle (Controle 1) foi montado com apenas 5 g DQO L-1 GB, não sendo verificada produção de H2. O efluente gerado no Ensaio 1 (200 mL) foi usado como substrato no 2º estágio (Ensaio 2) por um inóculo in natura identificado por consórcio de bactérias anaeróbias fermentativas e archaeas metanogênicas, no reator anaeróbio metanogênico (500 mL), headspace com N2, pH 7,0, a 37 °C, gerando 229,08 mmol CH4 L-1 em 624 h de operação. Além disso, 87,34 % da DQO e 93,75 % do metanol proveniente do GB foram consumidos. O efluente gerado pelo Controle 1 produziu apenas 40,58 mmol CH4 L-1 (Controle 2). Dessa forma, constatou-se que a codigestão elevou a geração de biogás, com consumos de resíduos orgânicos e tóxicos presentes no GB por meio dos sistemas integrados.
ABSTRACT The biodiesel production has grown and it gained prominence in the global energy scenario. As a result, its main co-product, crude glycerol (CG), has accompanied this increase, causing the formation of large stocks of this residue. A promising alternative for its reduction is the use by anaerobic biological processes aiming at the biogas production, as hydrogen (H2) as methane (CH4). It is known that the efficiency of this bioconversion increases through co-digestion with other organic waste. Thus, the objective of this study consisted in the co-digestion of CG, from the biodiesel production through waste cooking oils, with citrus vinasse (CV), in two sequential stages. In the 1st stage (Assay 1), the anaerobic reactor was operated in batch, fed with 5 g COD L-1 CG and 5 g COD L-1 CV, in the presence of a mixed culture belonging to the genus Clostridium sp., at 37 °C, pH 5.5, headspace with N2, generating 4.48 mmol H2 L-1 in 112 h of experiment, being consumed 93.19 % of CG and 74.00 % of glucose. A control assay (Control 1) was assembled with only 5 g COD L-1 CG, without H2 production. The effluent generated in Assay 1 (200 mL) was used as a substrate in the 2nd stage (Assay 2) by an inoculum in natura identified by a consortium of anaerobic bacteria and methanogenic archaea, in the anaerobic methanogenic reactor (500 mL), headspace with N2, pH 7.0, at 37 °C, generating 229.08 mmol CH4 L-1 in 624 h of operation. In addition, 87.34 % of COD and 93.75 % of methanol from CG were consumed. The effluent generated by Control 1 produced only 40.58 mmol CH4 L-1 (Control 2). Thus, it was found that co-digestion increased the biogas generation, with consumption of organic and toxic waste present in CG through integrated systems.