Resumen Este trabajo trata de la estimación de una fuga para un sistema de tubería principal sin ramificaciones. Se propone un algoritmo y una red neuronal con cuatro variables de entrada, una capa oculta con 25 neuronas y tres variables de salida. La obtención de los datos se realizó mediante un bucle anidado en Visual Basic (Excel®) estableciendo 35.837 escenarios de fuga para una tubería de 30 m que conduce agua con viscosidad cinemática de 0,000001 (m2/s), un diámetro igual a 0,15222 m, rugosidad de 0,0000015 m, pérdida de carga de 3,5 m y dos accesorios (k 1 , k 2 ) que suma 1,5. Se instalaron en el sistema hidráulico dos caudalímetros y dos manómetros virtuales al inicio y al final de la tubería. Asimismo, se utiliza Epanet® e Hydroflo® (Tahoe Design Software) para estructurar el modelo hidráulico y validar los datos iniciales. Se utilizó MatLab R2021a para analizar los algoritmos de aprendizaje de retropropagación y regularización bayesiana, adoptando la función de transferencia log sigmoide. Como función de control se implementó el error medio cuadrático y el coeficiente de determinación R 2 . El modelo neuronal obtenido presentó un error medio cuadrático de 1,44E-06 y un error relativo igual a 0,0055 % para los datos de entrenamiento. La validación cruzada de la red neuronal se realizó a partir de 5.973 datos de entrada independientes.
Abstract This work deals with the estimation of a leak for a main pipe system without branches. An algorithm and a neural network with 4 input variables are proposed, a hidden layer with 25 neurons and 3 output variables. The data was obtained through a nested loop in Visual Basic (Excel®) establishing 35,837 leak scenarios for a 30 m pipe that conducts water with a kinematic viscosity of 0.000001 (m2/s), a diameter equal to 0.15222 m, roughness of 0.0000015 m, pressure drop of 3.5 m and two accessories (k 1 , k 2 ) that add up to 1.5. Two flowmeters and two virtual pressure gauges were installed in the hydraulic system at the beginning and end of the pipeline. Also, Epanet® and Hydroflo® (Tahoe Design Software) are used to structure the hydraulic model and validate the initial data. Matlab R2021a was used to analyze the Backpropagation and Bayesian Regularization learning algorithms adopting the log sigmoid transfer function. The mean square error and the coefficient of determination R 2 were implemented as a control function. The neural model obtained presented a mean square error of 1.44E-06 and a relative error equal to 0.0055% for the training data. The cross-validation of the neural network was carried out from 5,973 independent input data.
Resumo Este trabalho trata da estimativa de vazamento para um sistema de tubulação principal sem ramificações. Um algoritmo e um vermelho neural com 4 variáveis de entrada são propostos, uma camada oculta com 25 neurônios e 3 variáveis de saída. A coleta de dados é realizada por meio de um loop aninhado no Visual Basic (Excel®) estabelecendo 35.837 cenários de fuga para uma tubulação de 30 m que transporta água com viscosidade cinemática de 0,000001 (m2/s), diâmetro igual a 0,15222 m, rugosidade de 0,0000015 m, perda de carga de 3,5 m dos acessórios (k 1 , k 2 ) que soma 1,5. É instalado no sistema hidráulico dos medidores de vazão e manômetros virtuais no início e no final da tubulação. Asimism, Epanet® e Hydroflo® (Tahoe Design Software) são usados para estruturar o modelo hidráulico e validar os dados iniciais. Use o Matlab R2021a para analisar os algoritmos de aprendizagem de retropropagação e regularização bayesiana adotando a função de transferência log sigmóide. A função de controle implementa o erro quadrático médio e o coeficiente de determinação R 2 . O modelo neuronal obtido apresenta um erro quadrático médio de 1,44E-06 e um erro relativo igual a 0,0055% para os dados de entrada. A validação cruzada do vermelho neuronal foi realizada a partir de 5.973 dados de entrada independentes.