ABSTRACT The field of differential equations has recently gained attention due to recent developments in science and technology. For this reason, the analysis for the use of new methodologies to solve them has become important. Based on the combination of Laplace Transform method (LT) and Perturbation Method (PM) this article pro- poses the Laplace transform-Perturbation Method (LT-PM) which finds its motivation on the application of LT to linear ordinary differential equations. The goal of this work is to propose a modification of PM - the LT-PM), in order to solve nonlinear perturbative problems with boundary conditions defined on finite intervals. The proposed methodology consisted on the application of LT to the differential equation to solve and then, assuming that its solutions can be expressed as a series of perturbative parameter powers. Thus, the solution of the problem is obtained by systematically applying the transformed inverse LT. The main results of this paper were shown through two case studies, where LT-PM is identified as potentially useful for finding multiple solutions to nonlinear problems. Additionally, the LT-PM enhances the applicability of PM, in some cases of mixed and Neumann boundary conditions, where PM is unsuitable to provide the results. With the purpose of verifying the accuracy of the obtained results, the Square Residual Error (SRE) was calculated. The resulting value was extremely low, which showed the precision and potential of LT-PM. We conclude that, although the proposed method resulted efficient for the case studies presented in this article, it is expected that LT-PM can be a potentially useful tool for other case studies. Particularly those related to the practical applications of science and engineering.
RESUMEN El campo de las ecuaciones diferenciales ha cobrado auge en la actualidad por el desarrollo científico y tecnológico. Por esta situación, el estudio de nuevas metodologías para solucionarlas se ha vuelto importante. A partir de la combinación del método de Laplace Transform (LT) y el método de perturbación (PM) este trabajo presenta el método LT-PM, y su motivación se encuentra en la aplicación conocida de la LT a ecuaciones diferenciales ordinarias lineales. El objetivo de este trabajo fue presentar una modificación del método de perturbación (PM), el método de perturbación con transformada de Laplace (LT-PM), con el fin de resolver problemas perturbativos no lineales, con condiciones a la frontera definidas en intervalos finitos. La metodología consistió en aplicar LT a la ecuación diferencial por resolver y después de asumir que la solución de la misma se puede expresar como una serie de potencias de un parámetro perturbativo, se obtiene la solución del problema aplicando sistemáticamente la transformada inversa de Laplace. Los principales resultados de este trabajo se muestran a partir de dos casos de estudio presentados, donde se observa que LT-PM es potencialmente útil para encontrar soluciones múltiples de problemas no lineales. Además, LT-PM mejora la aplicabilidad del método de perturbación en algunos casos de condiciones a la frontera mixtas y de Neumann, donde PM simplemente no funciona. Con el fin de verificar la exactitud de los resultados obtenidos, se calculó su error residual cuadrático (SRE), el cual resultó muy bajo, de donde se dedujo su precisión y la potencialidad de LT-PM. Se concluye que si bien el método propuesto resulta eficiente en los casos particulares presentados, se espera que sea una herramienta potencialmente eficiente y útil para otros casos de estudio, particularmente, en aquellos relacionados con aplicaciones prácticas en ciencias e ingeniería.