Abstract Technological advancement has had a significant impact on written production, especially in Additional Languages (ALs). Although technology has brought new opportunities for AL teaching, it also poses challenges, including concerns about the complexity of writing and the authenticity of students’ work. One such tool is ChatGPT, an artificial intelligence (AI) platform that has been the subject of debate since its popularization in 2022. This study analyses a corpus consisting of six tasks produced by ChatGPT in five languages (German, Spanish, French, Italian, and Portuguese), considering the proficiency levels proposed by the Common European Framework of Reference for Languages (CEFR), totalling 2991 texts and 706,401 words. The data were generated by students in a computer lab at a British university from 100 different profiles on the ChatGPT platform, following the researchers’ instructions. Data analysis employs Systemic Functional Linguistics (SFL) and the concept of lexical density ( Halliday, 1985, 1987, 1993; Halliday; Matthiessen, 2014) to investigate the complexity of the produced texts, as lexical complexity is related to proficiency in writing, where more advanced texts proportionally use more “content words” (nouns, verbs, adjectives, and some adverbs of manner). The results reveal that ChatGPT does not adhere to task instructions regarding the requested word count, thereby impacting the calculation of lexical density, nor does it produce texts that show significant differences in lexical density among additional languages and proficiency levels. production ALs. ALs . (ALs) teaching challenges work AI (AI 2022 German, German (German Spanish French Italian Portuguese, Portuguese , Portuguese) CEFR, CEFR (CEFR) 299 706401 706 401 706,40 words 10 researchers SFL (SFL Halliday 1985 1987 1993 Matthiessen 2014 content nouns, nouns (nouns verbs adjectives manner. manner manner) count (ALs 202 (CEFR 29 70640 70 40 706,4 1 198 199 201 20 2 7064 7 4 706, 19
Resumo O avanço tecnológico tem tido um grande impacto na produção escrita, especialmente em Línguas Adicionais (LAs). Embora a tecnologia tenha trazido novas oportunidades para o ensino de LAs, ela também apresenta desafios, incluindo preocupações sobre a complexidade da escrita e a autenticidade dos trabalhos dos alunos. Uma dessas ferramentas é o ChatGPT, plataforma de inteligência artificial (IA) que tem sido objeto de debates desde sua popularização em 2022. Este estudo analisa um corpus composto por seis tarefas produzidas pelo ChatGPT em cinco idiomas (alemão, espanhol, francês, italiano e português), considerando os níveis de proficiência propostos pelo Quadro Comum Europeu de Referência para Línguas (CEFR), que totalizou 2991 textos e 706,401 palavras. Os dados foram gerados por alunos em um laboratório de informática em uma universidade britânica a partir de 100 diferentes perfis na plataforma do ChatGPT, seguindo instruções dos pesquisadores. A análise dos dados utiliza a linguística sistêmico-funcional (LSF) e o conceito de densidade lexical ( Halliday, 1985, 1987, 1993; Halliday; Matthiessen, 2014) para investigar a complexidade dos textos produzidos, dado que a complexidade lexical está relacionada à proficiência na escrita, na qual textos mais avançados usam proporcionalmente mais “palavras de conteúdo” (nomes, verbos, adjetivos e alguns advérbios de modo). Os resultados revelam que o ChatGPT não segue as instruções das tarefas quanto ao número de palavras solicitadas, impactando, assim, no cálculo da densidade lexical, nem produz textos que mostram diferenças significativas da densidade lexical entre as línguas adicionais e níveis de proficiência. LAs. LAs . (LAs) desafios IA (IA 2022 alemão, alemão (alemão espanhol francês português, português , português) CEFR, CEFR (CEFR) 299 706401 706 401 706,40 10 pesquisadores sistêmicofuncional sistêmico funcional LSF (LSF Halliday 1985 1987 1993 Matthiessen 2014 produzidos conteúdo nomes, nomes (nomes verbos modo. modo modo) solicitadas impactando assim (LAs 202 (CEFR 29 70640 70 40 706,4 1 198 199 201 20 2 7064 7 4 706, 19