O contexto da racionalização dos sistemas de produção, a inserção de parâmetros não-econômicos na tomada de decisão e a magnitude do cultivo de eucalipto, no Estado de São Paulo, Brasil, nortearam este estudo, cujo objetivo foi estabelecer os fluxos e o desempenho das transformações energéticas de um sistema de produção de eucalipto. O sistema avaliado apresentou três alternativas de manejo de acidez do solo: calcário, cinzas e biossólido. Os indicadores utilizados foram o retorno de energia sobre energia investida, intensidade e balanço energéticos, que representam, respectivamente, a taxa de retorno de energia obtida, a energia contida na biomassa e a energia obtida por área. Para o cenário básico, calcário, o retorno de energia sobre energia investida foi de 58,5 MJ MJ-1, a intensidade energética da biomassa 124,7 MJ m-3 e o balanço de energia foi 2120,7 GJ ha-1. A energia demandada foi maior com cinzas (5,2%) e biossólido (57,2%). Os principais insumos foram, em ordem decrescente: combustível, fertilizantes, herbicida e calcário. A colheita é a principal operação (56,7%), seguida da subsolagem. O combustível gasto na colheita mais fertilizantes e calcário correspondem a 79,6% da energia necessária. A sensibilidade do sistema mostrou que o material de controle de acidez do solo causa maiores efeitos na demanda de energia (até +57,4%) que os cenários sugeridos (-5,3% com acréscimo da eficiência de campo).
Maximizing yields is opposed to the goal of minimizing the use of inputs. In the context of system rationalization, the addition of non-economic parameters in the decision making and the magnitude of eucalyptus plantation in Sao Paulo State, Brazil led to this study. The objective was to establish the flows and to evaluate the performance of energy transformations on eucalyptus production. The evaluated system presented three alternatives of soil acidity management: lime, ash and sludge application. The applied indicators were energy return on investment, energy intensity and energy balance, which meant, respectively, the return over energy investment, the energy content of biomass and the energy obtained per area. For the basic scenario, lime, EROI was 58.5 MJ MJ-1, energy intensity was 124.7 MJ m-3, and the energy balance was 2120.7 GJ ha-1. The required energy was larger when ash (5.2%) and sludge (57.2%) were used. The main inputs were, in order, fuel, fertilizers, herbicide and lime. Harvesting was the main operation (56.7%), followed by subsoiling. Fuel in harvesting, fertilizers and lime summed 79.6% of the total energy. The sensitivity of the system showed that the material used to control soil acidity had more effect on the energy demand (up to +57.4%) than the suggested scenarios (-5.3% when the field efficiency was increased).