A eficiência dos procedimentos de digestão em fornos de microondas pode ser afetada por parâmetros experimentais críticos, como massa de amostra, volume da mistura ácida, potência de radiação aplicada e o tempo da digestão. Neste trabalho foi proposta a utilização de um planejamento fatorial completo para a otimização da digestão de amostras de óleo lubrificante em forno de microondas, com recipientes fechados. O teor de carbono residual e a acidez final das soluções foram determinados em todos os digeridos provenientes do forno de microondas, como resposta ao planejamento fatorial. Cálcio, Cu, Mg, P, S e Zn foram determinados nos digeridos ácidos e a exatidão foi checada utilizando-se um material de referência certificado, NIST SRM 1848-Lubricating Oil Additive Package. Os resultados encontrados para as amostras e para o material de referência certificado estão em concordância a um nível de confiança de 95%. Tempo de digestão, potência de radiação aplicada, massa de amostra e as interações entre essas variáveis foram significativas (P < 5%), aplicando-se a análise de variância (ANOVA).
This work proposes the use of factorial design for optimization of microwave-assisted digestion of lubricating oil. The accuracy of digestion procedures is affected by critical experimental parameters, such as sample amount, concentrated acid volumes, microwave radiation applied power, and digestion time. The effects of these key variables on the microwave-assisted digestion efficiency were investigated. The residual carbon content and the acidity were determined in all digestates after microwave-assisted digestion as response of the factorial design. Calcium, Cu, Mg, P, S, and Zn were determined in oil digestates obtained by using two systems: a cavity- and a focused-oven. The accuracy was checked using one standard reference material, NIST SRM 1848 - Lubricating Oil Additive Package. All determined and certified values are in agreement at a 95% confidence level. The digestion time, microwave applied power, sample mass, and the interaction between these variables were significant according to P-values when the analysis of variance (ANOVA) was used.