Abstract A previous study on the evaluation of control charts for the mean with a Bayesian approach, based on predictive limits, was performed in such a way that neither prior nor sample information was taken into account. This work was developed to make a more complete study to evaluate the influence of the combination of the prior distribution with the sample information. It is assumed that the quality characteristic to be controlled can be modeled by a Normal distribution and two cases are considered: known and unknown variance. A Bayesian conjugate model is established, therefore the prior distribution for the mean is Normal and, in the case where the variance is unknown, the prior distribution for the variance is defined as the Inverse-Gamma(v, v). The posterior predictive distribution, which is also Normal, is used to establish the control limits of the chart. Signal propability is used to measure the performance of the control chart in phase II, with the predictive limits calculated under different specifications of the prior distributions, and two different sizes of the calibration sample and the future sample. The simulation study evaluates three aspects: the effects of sample sizes, the distance of the prior mean to the mean of the calibration sample, and an indicator of how informative is the prior distribution of the population mean. In addition, in the case of unknown variance, we study what is the effect of changing values in the parameter v. We found that the false alarm rate could be quite large if the prior distribution is very informative which in turn leads to an ARL (average run length) biased chart, that is, the maximum of the ARL is not given when the process is under control. Besides, we found great influence of the prior distribution on the control chart power when the size of the calibration and future samples are small, particulary when the prior is very informative. Finally, regarding the effect of the parameter v, we found that the smaller the value, which means having a less informative prior distribution, the lower the power of the control chart.
Resumen Un estudio previo sobre la evaluación de las gráficas de control para la media con un enfoque Bayesiano, basadas en límites predictivos, fue realizado de tal manera que no se tuvo en cuenta ni la información a priori ni la información muestral. En este trabajo hemos desarrollado un estudio más completo para evaluar la influencia de la combinación de la distribución a priori con la información muestral. Se asume que la característica de calidad a controlar puede modelarse mediante una distribución Normal y se consideran dos casos: varianza conocida y desconocida. Para la aproximación Bayesiana se establece un modelo conjugado, por lo tanto la distribución a priori para la media es Normal y, en el caso donde la varianza es desconocida, se define como distribución a priori para la varianza la Gamma-Inversa(v, v). La distribución predictiva posterior, que también es Normal, es utilizada para establecer los límites de control de la gráfica. Se utiliza la probabilidad de señal para medir el desempeño de la gráfica en la denominada phase II de control, con los límites predictivos calculados bajo diferentes especificaciones de las distribuciones a priori, del tamaño de la muestra de calibración y del tamaño de la muestra futura. El estudio de simulación evalúa tres aspectos: efectos del tamaño de muestra, de la distancia de la media a priori con relación a la media de la muestra de calibración, y un indicador de cuán informativa es la distribución a priori de la media poblacional. Adicionalmente, cuando la varianza es desconocida, se estudia el efecto de los valores del parámetro v. Se encuentra que la tasa de falsas alarmas puede ser exageradamente grande si se especifica una a priori muy informativa, lo que a su vez puede conducir a una gráfica de control con una ARL (average run length) sesgada, es decir, que el máximo de la ARL no se dará cuando el proceso está en control. Además, cuando el tamaño de las muestras de calibración y de la muestra futura son pequeñas, hay gran influencia de la especificación de la a priori sobre la potencia de la gráfica de control, en especial cuando la a priori es muy informativa. Finalmente, en cuanto al efecto del parámetro v, se encuentra que entre más pequeño es su valor, lo cual indica que la distribución a priori para la varianza es menos informativa, menor es la potencia de la gráfica de control, en especial si los tamaños de muestra son pequeños.